Various Suzuki type theorems in $b$-metric spaces
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 363-377.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we prove some fixed point results for $\alpha$-admissible mappings which satisfy Suzuki type contractive condition in the setup of b-metric spaces. Finally, examples are presented to verify the effectiveness and applicability of our main results.
DOI : 10.22436/jnsa.008.04.09
Classification : 47H10, 54H25
Keywords: Ordered metric space, b-metric space, fixed point.

Latif, A. 1 ; Parvaneh, V. 2 ; Salimi, P. 3 ; Al-Mazrooei, A. E.  4

1 Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran
3 Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran
4 Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
@article{JNSA_2015_8_4_a8,
     author = {Latif, A. and Parvaneh, V. and Salimi, P. and Al-Mazrooei, A. E. },
     title = {Various {Suzuki} type theorems in \(b\)-metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {363-377},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     doi = {10.22436/jnsa.008.04.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.09/}
}
TY  - JOUR
AU  - Latif, A.
AU  - Parvaneh, V.
AU  - Salimi, P.
AU  - Al-Mazrooei, A. E. 
TI  - Various Suzuki type theorems in \(b\)-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 363
EP  - 377
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.09/
DO  - 10.22436/jnsa.008.04.09
LA  - en
ID  - JNSA_2015_8_4_a8
ER  - 
%0 Journal Article
%A Latif, A.
%A Parvaneh, V.
%A Salimi, P.
%A Al-Mazrooei, A. E. 
%T Various Suzuki type theorems in \(b\)-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2015
%P 363-377
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.09/
%R 10.22436/jnsa.008.04.09
%G en
%F JNSA_2015_8_4_a8
Latif, A.; Parvaneh, V.; Salimi, P.; Al-Mazrooei, A. E. . Various Suzuki type theorems in \(b\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 363-377. doi : 10.22436/jnsa.008.04.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.09/

[1] Aghajani, A.; Abbas, M.; J. R. Roshan Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, Volume 64 (2014), pp. 941-960

[2] Berinde, V. Generalized contractions in quasi-metric spaces, Seminar on Fixed Point Theory, Preprint, Volume 3 (1993), pp. 3-9

[3] Berinde, V. Sequences of operators and fixed points in quasi-metric spaces, Studia Universitatis Babes-Bolyai, Mathematica, Volume 16 (1996), pp. 23-27

[4] Berinde, V. Contracţii generalizate şi aplicaţii , Editura Club Press, Baia Mare, 1997

[5] Bojor, F. Fixed point theorems for Reich type contraction on metric spaces with a graph, Nonlinear Anal., Volume 75 (2012), pp. 3895-3901

[6] M. Boriceanu Fixed point theory for multivalued generalized contractions on a set with two b-metrics, Studia Univ. ''Babes-Bolyai'', Mathematica, Vol. LIV, No. 3, 2009

[7] Boriceanu, M. Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Modern Math., Volume 4 (2009), pp. 285-301

[8] Czerwik, S. Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav., Volume 1 (1993), pp. 5-11

[9] Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, Volume 46 (1998), pp. 263-276

[10] Dukić, D.; Kadelburg, Z.; Radenović, S. Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-13

[11] Edelstein, M. On fixed and periodic points under contractive mappings , J. London Math. Soc., Volume 37 (1962), pp. 74-79

[12] Geraghty, M. On contractive mappings , Proc. Amer. Math. Soc., Volume 40 (1973), pp. 604-608

[13] Hussain, N.; Đorić, D.; Kadelburg, Z.; Radenović, S. Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12

[14] D. S. Jaggi Some unique fixed point theorems , Indian J. Pure Appl. Math., Volume 8 (1977), pp. 223-230

[15] Jachymski, J. The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 1359-1373

[16] Khamsi, M. A.; Hussain, N. KKM mappings in metric type spaces, Nonlinear Anal., Volume 73 (2010), pp. 3123-3129

[17] Karapınar, E.; Kumam, P.; Salimi, P. On \(\alpha-\psi\)-Meir-Keeler contractive mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-12

[18] Nashine, H. K.; Imdad, M.; Hasanc, M. Common fixed point theorems under rational contractions in complex valued metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 42-50

[19] Nieto, J. J.; Lopez, R. R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, Volume 22 (2005), pp. 223-239

[20] Ozturk, M.; Basarir, M. On some common fixed point theorems with rational expressions on cone metric spaces over a Banach algebra, Hacet. J. Math. Stat., Volume 41 (2012), pp. 211-222

[21] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1435-1443

[22] Roshan, J. R.; Parvaneh, V.; Sedghi, S.; Shobkolaei, N.; Shatanawi, W. Common fixed points of almost generalized \((\psi,\varphi )_s\)-contractive mappings in ordered b-metric spaces , Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-23

[23] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorem for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165

[24] Salimi, P.; Karapınar, E. Suzuki-Edelstein type contractions via auxiliary functions , Math. Probl. Eng., Volume 2013 (2013), pp. 1-8

[25] Shahkoohi, R. J.; A. Razani Some fixed point theorems for rational Geraghty contractive mappings in ordered b-metric spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-23

[26] Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 1861-1869

[27] T. Suzuki A new type of fixed point theorem in metric spaces, Nonlinear Anal.-TMA, Volume 71 (2009), pp. 5313-5317

[28] Zabihi, F.; A. Razani Fixed point theorems for Hybrid rational Geraghty contractive mappings in ordered b-metric spaces, J. Appl. Math., Volume 2014 (2014), pp. 1-9

Cité par Sources :