Voir la notice de l'article provenant de la source International Scientific Research Publications
Zheng, Yuchun 1
@article{JNSA_2015_8_4_a7, author = {Zheng, Yuchun}, title = {Attractive points and convergence theorems of generalized hybrid mapping}, journal = {Journal of nonlinear sciences and its applications}, pages = {354-362}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2015}, doi = {10.22436/jnsa.008.04.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.08/} }
TY - JOUR AU - Zheng, Yuchun TI - Attractive points and convergence theorems of generalized hybrid mapping JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 354 EP - 362 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.08/ DO - 10.22436/jnsa.008.04.08 LA - en ID - JNSA_2015_8_4_a7 ER -
%0 Journal Article %A Zheng, Yuchun %T Attractive points and convergence theorems of generalized hybrid mapping %J Journal of nonlinear sciences and its applications %D 2015 %P 354-362 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.08/ %R 10.22436/jnsa.008.04.08 %G en %F JNSA_2015_8_4_a7
Zheng, Yuchun. Attractive points and convergence theorems of generalized hybrid mapping. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 354-362. doi : 10.22436/jnsa.008.04.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.08/
[1] Un théoréme de type ergodique pour les contractions non linéars dans un espaces de Hilbert, C.R. Acad. Sci. Paris Ser. A-B, Volume 280 (1975), pp. 1511-1541
[2] A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math., Volume 32 (1979), pp. 107-116
[3] On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math., Volume 38 (1981), pp. 304-314
[4] Weak and strong convergence theorems for generalized hybrid mappings in Hilbert spaces, Sci. Math. Jpn., Volume 73 (2011), pp. 31-40
[5] Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces , Taiwanese J. Math., Volume 14 (2010), pp. 2497-2511
[6] Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel), Volume 91 (2008), pp. 166-177
[7] Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510
[8] Construction of fixed points of demicompact mappings in Hilbert space, J. Math. Anal. Appl., Volume 14 (1966), pp. 276-284
[9] Approximating fixed points of nonexpansive mappings , Proc. Amer. Math. Soc., Volume 44 (1974), pp. 375-380
[10] Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal., Volume 11 (2010), pp. 79-88
[11] Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math., Volume 15 (2011), pp. 457-472
[12] Nonlinear ergodic theorem without convexity for generalized hybrid mappings in a Hilbert space , J. Nonlinear Convex Anal., Volume 12 (2011), pp. 399-406
[13] Inequality in Banach spaces with applications, Nonlinear Anal., Volume 16 (1991), pp. 1127-1138
Cité par Sources :