Attractive points and convergence theorems of generalized hybrid mapping
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 354-362.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, by means of the concept of attractive points of a nonlinear mapping, we prove strong convergence theorem of the Ishikawa iteration for an ($\alpha,\beta$)-generalized hybrid mapping in a uniformly convex Banach space, and obtain weak convergence theorem of the Ishikawa iteration for such a mapping in a Hilbert space.
DOI : 10.22436/jnsa.008.04.08
Classification : 47H10, 54H25, 49J40, 47H05, 47H04, 65J15
Keywords: Attractive points, generalized hybrid mapping, Ishikawa iteration, Mann iteration, Xu's inequality.

Zheng, Yuchun 1

1 School of Mathematics and Information Science, Henan Normal University, XinXiang, 453007, P. R. China
@article{JNSA_2015_8_4_a7,
     author = {Zheng, Yuchun},
     title = {Attractive points and convergence theorems of generalized hybrid mapping},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {354-362},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     doi = {10.22436/jnsa.008.04.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.08/}
}
TY  - JOUR
AU  - Zheng, Yuchun
TI  - Attractive points and convergence theorems of generalized hybrid mapping
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 354
EP  - 362
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.08/
DO  - 10.22436/jnsa.008.04.08
LA  - en
ID  - JNSA_2015_8_4_a7
ER  - 
%0 Journal Article
%A Zheng, Yuchun
%T Attractive points and convergence theorems of generalized hybrid mapping
%J Journal of nonlinear sciences and its applications
%D 2015
%P 354-362
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.08/
%R 10.22436/jnsa.008.04.08
%G en
%F JNSA_2015_8_4_a7
Zheng, Yuchun. Attractive points and convergence theorems of generalized hybrid mapping. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 354-362. doi : 10.22436/jnsa.008.04.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.08/

[1] Baillon, J. B. Un théoréme de type ergodique pour les contractions non linéars dans un espaces de Hilbert, C.R. Acad. Sci. Paris Ser. A-B, Volume 280 (1975), pp. 1511-1541

[2] Bruck, R. E. A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math., Volume 32 (1979), pp. 107-116

[3] Bruck, R. E. On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math., Volume 38 (1981), pp. 304-314

[4] Hojo, M.; W. Takahashi Weak and strong convergence theorems for generalized hybrid mappings in Hilbert spaces, Sci. Math. Jpn., Volume 73 (2011), pp. 31-40

[5] Kocourek, P.; Takahashi, W.; J. C. Yao Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces , Taiwanese J. Math., Volume 14 (2010), pp. 2497-2511

[6] Kohsaka, F.; W. Takahashi Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel), Volume 91 (2008), pp. 166-177

[7] Mann, W. R. Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510

[8] Petryshyn, W. V. Construction of fixed points of demicompact mappings in Hilbert space, J. Math. Anal. Appl., Volume 14 (1966), pp. 276-284

[9] Senter, H. F.; W. G. Dotson Approximating fixed points of nonexpansive mappings , Proc. Amer. Math. Soc., Volume 44 (1974), pp. 375-380

[10] W. Takahashi Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal., Volume 11 (2010), pp. 79-88

[11] Takahashi, W.; J. C. Yao Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math., Volume 15 (2011), pp. 457-472

[12] Takahashi, W.; Y. Takeuchi Nonlinear ergodic theorem without convexity for generalized hybrid mappings in a Hilbert space , J. Nonlinear Convex Anal., Volume 12 (2011), pp. 399-406

[13] Xu, H. K. Inequality in Banach spaces with applications, Nonlinear Anal., Volume 16 (1991), pp. 1127-1138

Cité par Sources :