Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 340-353.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper investigates the existence of positive solutions for a class of boundary value problems (BVP) of fractional impulsive differential equations and presents a number of new results. First, by constructing a novel transformation, the considered impulsive system is convert into a continuous system. Second, using a specially constructed cone, the Krein-Rutman theorem, topological degree theory, and bifurcation techniques, some sufficient conditions are obtained for the existence of positive solutions to the considered BVP. Finally, an example is worked out to demonstrate the main result.
DOI : 10.22436/jnsa.008.04.07
Classification : 34A60, 34B16, 34B18
Keywords: Positive solutions, bifurcation techniques, fractional differential equations with impulse, boundary value problems.

Liu, Yansheng 1

1 Department of Mathematics, Shandong Normal University, Jinan, 250014, P. R. China
@article{JNSA_2015_8_4_a6,
     author = {Liu, Yansheng},
     title = {Bifurcation techniques  for a class of  boundary value problems of  fractional impulsive differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {340-353},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     doi = {10.22436/jnsa.008.04.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.07/}
}
TY  - JOUR
AU  - Liu, Yansheng
TI  - Bifurcation techniques  for a class of  boundary value problems of  fractional impulsive differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 340
EP  - 353
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.07/
DO  - 10.22436/jnsa.008.04.07
LA  - en
ID  - JNSA_2015_8_4_a6
ER  - 
%0 Journal Article
%A Liu, Yansheng
%T Bifurcation techniques  for a class of  boundary value problems of  fractional impulsive differential equations
%J Journal of nonlinear sciences and its applications
%D 2015
%P 340-353
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.07/
%R 10.22436/jnsa.008.04.07
%G en
%F JNSA_2015_8_4_a6
Liu, Yansheng. Bifurcation techniques  for a class of  boundary value problems of  fractional impulsive differential equations. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 340-353. doi : 10.22436/jnsa.008.04.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.07/

[1] Agarwal, R. P.; Benchohra, M.; Hamani, S. A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions, Acta Appl. Math., Volume 109 (2010), pp. 973-1033

[2] Ahmada, B.; Sivasundaram, S. Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Analysis: Hybrid Systems, Volume 4 (2010), pp. 134-141

[3] Bai, Z.; Lv, H. Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., Volume 311 (2005), pp. 495-505

[4] Choisy, M.; Guegan, J. F.; Rohani, P. Dynamics of infectious diseases and pulse vaccination: Teasing apart the embedded resonance effects, Physica D., Volume 22 (2006), pp. 26-35

[5] K. Diethelm The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, LNM 2004, Springer, 2010

[6] d'Onofrio, A. On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Appl. Math. Lett., Volume 18 (2005), p. 729-32

[7] Fečkan, M.; Zhou, Y.; J. Wang On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 3050-3060

[8] Gao, S.; Chen, L.; Nieto, J. J.; Torres, A. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, Volume 24 (2006), pp. 6037-6045

[9] Guo, D. Nonlinear Functional Analysis, Jinan: Shandong Science and Technology Press, in Chinese, 2001

[10] Jiang, J.; Liu, L.; Wu, Y. Positive solutions to singular fractional differential system with coupled boundary conditions, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 3061-3074

[11] Jiang, D.; Yuan, C. The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear Anal.-TMA, Volume 72 (2010), pp. 710-719

[12] Kilbas, A. A.; Trujillo, J. J. Differential equations of fractional order: methods, results and problems I, Appl. Anal., Volume 78 (2001), pp. 153-192

[13] Kilbas, A. A.; Trujillo, J. J. Differential equations of fractional order: methods, results and problems II, Appl. Anal., Volume 81 (2002), pp. 435-493

[14] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989

[15] Liu, Y.; O'Regan, D. Bifurcation techniques for Lidstone boundary value problems, Nonlinear Anal.-TMA, Volume 68 (2008), pp. 2801-2812

[16] Liu, Y.; O'Regan, D. Multiplicity results using bifurcation techniques for a class of boundary value problems of impulsive differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 1769-1775

[17] Ma, R.; Xu, J. Bifurcation from interval and positive solutions of a nonlinear fourthorder boundary value problem, Nonlinear Anal.-TMA, Volume 72 (2010), pp. 113-122

[18] Ma, R.; Yang, B.; Z. Wang Positive periodic solutions of first-order delay differential equations with impulses, Appl. Math. Comput., Volume 219 (2013), pp. 6074-6083

[19] I. Podlubny Fractional Differential Equations , Mathematics in Science and Engineering, Academic Press, New York, 1999

[20] Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Fractional Integral And Derivatives (Theory and Applications), Gordon and Breach, Switzerland, 1993

[21] K. Schmitt Positive solutions of semilinear elliptic boundary value problem, Kluwer, Dordrecht (1995), pp. 447-500

[22] Schmitt, K.; Thompson, R. C. Nonlinear Analysis and Differential Equations: An Introduction, University of Utah Lecture Note, Salt Lake City, 2004

[23] C; Tian; Y; Liu Multiple positive solutions for a class of fractional singular boundary value problems, Mem. Differential Equations Math. Phys., Volume 56 (2012), pp. 115-131

[24] Wang, H. Existence results for fractional functional differential equations with impulses, J. Appl. Math. Comput., Volume 38 (2012), pp. 85-101

[25] X. Wang Impulsive boundary value problem for nonlinear differential equations of fractional order, Computers & Math. Appl., Volume 62 (2011), pp. 2383-2391

[26] Xu, J.; Ma, R. Bifurcation from interval and positive solutions for second order periodic boundary value problems, Appl. Math. Comput., Volume 216 (2010), pp. 2463-2471

[27] Zavalishchin, S. T.; Sesekin, A. N. Dynamic Impulse Systems: Theory and Applications, Kluwer Academic Publishers Group, Dordrecht, 1997

Cité par Sources :