Voir la notice de l'article provenant de la source International Scientific Research Publications
Wang, Xuhuan 1 ; Wang, Liping 2 ; Zeng, Qinghong 3
@article{JNSA_2015_8_4_a2, author = {Wang, Xuhuan and Wang, Liping and Zeng, Qinghong}, title = {Fractional differential equations with integral boundary conditions}, journal = {Journal of nonlinear sciences and its applications}, pages = {309-314}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2015}, doi = {10.22436/jnsa.008.04.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.03/} }
TY - JOUR AU - Wang, Xuhuan AU - Wang, Liping AU - Zeng, Qinghong TI - Fractional differential equations with integral boundary conditions JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 309 EP - 314 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.03/ DO - 10.22436/jnsa.008.04.03 LA - en ID - JNSA_2015_8_4_a2 ER -
%0 Journal Article %A Wang, Xuhuan %A Wang, Liping %A Zeng, Qinghong %T Fractional differential equations with integral boundary conditions %J Journal of nonlinear sciences and its applications %D 2015 %P 309-314 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.03/ %R 10.22436/jnsa.008.04.03 %G en %F JNSA_2015_8_4_a2
Wang, Xuhuan; Wang, Liping; Zeng, Qinghong. Fractional differential equations with integral boundary conditions. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 309-314. doi : 10.22436/jnsa.008.04.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.03/
[1] Fuzzy fractional integral equations under compactness type condition , Fract. Calc. Appl. Anal., Volume 15 (2012), pp. 572-590
[2] Monotone iterative sequences for nonlinear boundary value problems of fractional order, Nonlinear Anal., Volume 74 (2011), pp. 3531-3539
[3] \(L^P\) -solutions for fractional integral equations, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 259-276
[4] Differential equations with integral boundary conditions, J. Comput. Appl. Math., Volume 147 (2002), pp. 1-8
[5] Fractional equations of Volterra type involving a Riemann-Liouville derivative, Appl. Math. Letter, Volume 26 (2013), pp. 344-350
[6] Boundary problems for fractional differential equations , Appl. Math. Letter, Volume 28 (2014), pp. 14-19
[7] Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, vol. 204, Elsevier, Amsterdam, 2006
[8] Theory of fractional differential inequalities and applications, Commun. Appl. Anal., Volume 11 (2007), pp. 395-402
[9] General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Letter, Volume 21 (2008), pp. 828-834
[10] New existence results of positive solution for a class of nonlinear fractional differential equations, Acta. Math. Scientia, Volume 33 (2013), pp. 847-854
[11] Solvability for a Couple System of Nonlinear Fractional Differential Equations in a Banach Space, Fract. Calc. Appl. Anal., Volume 16 (2013), pp. 51-63
[12] Method of upper and lower solutions for fractional differential equations, Electron. J. Differential Equations, Volume 100 (2012), pp. 1-13
[13] Monotone iterative technique and existence results for fractional differential equations , Nonlinear Anal., Volume 71 (2009), pp. 6093-6096
[14] Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 246-254
[15] Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999
[16] Upper and lower solutions method and a fractional differential equation boundary value problem, Electron. J. Qual. Theory Differ. Equ., Volume 30 (2009), pp. 1-13
[17] Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments , J. Comput. Appl. Math., Volume 236 (2012), pp. 2425-2430
[18] Existence and uniqueness of fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 206-212
[19] Impulsive boundary value problem for nonlinear differential equations of fractional order, Comput. Math. Appl., Volume 62 (2011), pp. 2383-2391
[20] New results of positive solutions for second-order nonlinear three-point integral boundary value problems , J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 93-98
[21] Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., Volume 71 (2009), pp. 2087-2093
[22] The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions inreverse order, Comput. Math. Appl., Volume 62 (2011), pp. 1269-1274
Cité par Sources :