Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Hongwei 1 ; Jin, Yinlai 1
@article{JNSA_2015_8_3_a9, author = {Li, Hongwei and Jin, Yinlai}, title = {Two different distributions of limit cycles in a quintic system}, journal = {Journal of nonlinear sciences and its applications}, pages = {255-266}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2015}, doi = {10.22436/jnsa.008.03.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.10/} }
TY - JOUR AU - Li, Hongwei AU - Jin, Yinlai TI - Two different distributions of limit cycles in a quintic system JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 255 EP - 266 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.10/ DO - 10.22436/jnsa.008.03.10 LA - en ID - JNSA_2015_8_3_a9 ER -
%0 Journal Article %A Li, Hongwei %A Jin, Yinlai %T Two different distributions of limit cycles in a quintic system %J Journal of nonlinear sciences and its applications %D 2015 %P 255-266 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.10/ %R 10.22436/jnsa.008.03.10 %G en %F JNSA_2015_8_3_a9
Li, Hongwei; Jin, Yinlai. Two different distributions of limit cycles in a quintic system. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 255-266. doi : 10.22436/jnsa.008.03.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.10/
[1] Momodromy and stability for nilpotent critical points, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 15 (2005), pp. 1253-1265
[2] On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, American Math. Soc. Translation, Volume 1954 (1954), pp. 1-19
[3] Integrability of centers perturbed by quasi–homogeneous polynomials, J. Math. Anal. Appl., Volume 211 (1997), pp. 268-278
[4] A new algorithm for the computation of the Lyapunov constans for some degenerated critical points, Nonlin. Anal.: Proc. IIIrd World Congress on Nonlinear Analysis, Volume 47 (2001), pp. 4479-4490
[5] Bifurcation of limit cycles and isochronous centers for a quartic system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 23 (2013), pp. 1-10
[6] On third-order nilpotent critical points: integral factor method, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 21 (2011), pp. 1293-1309
[7] Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a septic Lyapunov system, Math. Comput. Simulation, Volume 81 (2011), pp. 2595-2607
[8] Bifurcation of limit cycles, classification of centers and isochronicity for a class of non-analytic quintic systems, Nonlinear Dynamics, Volume 76 (2014), pp. 183-197
[9] Bifurcation of limit cycles in a quintic system with ten parameters, Nonlinear Dynamics, Volume 71 (2013), pp. 213-222
[10] Center conditions and limit cycles for a class of nilpotent-Poincar systems, Appl. Math. Comput, Volume 243:2 (2014), pp. 114-120
[11] Two kinds of bifurcation phenomena in a quartic system, Adv. Difference Equ., Volume 2015 (2015), p. 13662-015
[12] Twelve limit cycles around a singular point in a planar cubic-degree polynomial, Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 2690-2705
Cité par Sources :