Two different distributions of limit cycles in a quintic system
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 255-266.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the conditions for bifurcations of limit cycles from a third-order nilpotent critical point in a class of quintic systems are investigated. Treaty the system coefficients as parameters, we obtain explicit expressions for the first fourteen quasi Lyapunov constants. As a result, fourteen or fifteen small amplitude limit cycles with different distributions could be created from the third-order nilpotent critical point by two different perturbations.
DOI : 10.22436/jnsa.008.03.10
Classification : 34C05, 34C07
Keywords: Third-order nilpotent critical point, center-focus problem, bifurcation of limit cycles, quasi-Lyapunov constant.

Li, Hongwei 1 ; Jin, Yinlai 1

1 School of Science, Linyi University, Linyi, 276005, China
@article{JNSA_2015_8_3_a9,
     author = {Li, Hongwei and Jin, Yinlai},
     title = {Two different distributions of limit cycles in a quintic system},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {255-266},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2015},
     doi = {10.22436/jnsa.008.03.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.10/}
}
TY  - JOUR
AU  - Li, Hongwei
AU  - Jin, Yinlai
TI  - Two different distributions of limit cycles in a quintic system
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 255
EP  - 266
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.10/
DO  - 10.22436/jnsa.008.03.10
LA  - en
ID  - JNSA_2015_8_3_a9
ER  - 
%0 Journal Article
%A Li, Hongwei
%A Jin, Yinlai
%T Two different distributions of limit cycles in a quintic system
%J Journal of nonlinear sciences and its applications
%D 2015
%P 255-266
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.10/
%R 10.22436/jnsa.008.03.10
%G en
%F JNSA_2015_8_3_a9
Li, Hongwei; Jin, Yinlai. Two different distributions of limit cycles in a quintic system. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 255-266. doi : 10.22436/jnsa.008.03.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.10/

[1] Alvarez, M.J.; A. Gasull Momodromy and stability for nilpotent critical points, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 15 (2005), pp. 1253-1265

[2] N. N. Bautin On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, American Math. Soc. Translation, Volume 1954 (1954), pp. 1-19

[3] Chavarriga, J.; García, I.; Giné, J. Integrability of centers perturbed by quasi–homogeneous polynomials, J. Math. Anal. Appl., Volume 211 (1997), pp. 268-278

[4] Gasull, A.; Torregrosa, J. A new algorithm for the computation of the Lyapunov constans for some degenerated critical points, Nonlin. Anal.: Proc. IIIrd World Congress on Nonlinear Analysis, Volume 47 (2001), pp. 4479-4490

[5] Huang, W.; Chen, A. Bifurcation of limit cycles and isochronous centers for a quartic system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 23 (2013), pp. 1-10

[6] Liu, Y.; J. Li On third-order nilpotent critical points: integral factor method, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 21 (2011), pp. 1293-1309

[7] Li, F.; Liu, Y.; Li, H. Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a septic Lyapunov system, Math. Comput. Simulation, Volume 81 (2011), pp. 2595-2607

[8] Li, F.; Qiu, J.; Li, J. Bifurcation of limit cycles, classification of centers and isochronicity for a class of non-analytic quintic systems, Nonlinear Dynamics, Volume 76 (2014), pp. 183-197

[9] Li, F.; Wang, M. Bifurcation of limit cycles in a quintic system with ten parameters, Nonlinear Dynamics, Volume 71 (2013), pp. 213-222

[10] Li, F.; Y. Wu Center conditions and limit cycles for a class of nilpotent-Poincar systems, Appl. Math. Comput, Volume 243:2 (2014), pp. 114-120

[11] Qiu, J.; Li, F. Two kinds of bifurcation phenomena in a quartic system, Adv. Difference Equ., Volume 2015 (2015), p. 13662-015

[12] Yu, P.; Tian, Y. Twelve limit cycles around a singular point in a planar cubic-degree polynomial, Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 2690-2705

Cité par Sources :