Voir la notice de l'article provenant de la source International Scientific Research Publications
Ege, Ozgur 1 ; Karaca, Ismet 2
@article{JNSA_2015_8_3_a7, author = {Ege, Ozgur and Karaca, Ismet}, title = {Banach fixed point theorem for digital images}, journal = {Journal of nonlinear sciences and its applications}, pages = {237-245}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2015}, doi = {10.22436/jnsa.008.03.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.08/} }
TY - JOUR AU - Ege, Ozgur AU - Karaca, Ismet TI - Banach fixed point theorem for digital images JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 237 EP - 245 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.08/ DO - 10.22436/jnsa.008.03.08 LA - en ID - JNSA_2015_8_3_a7 ER -
%0 Journal Article %A Ege, Ozgur %A Karaca, Ismet %T Banach fixed point theorem for digital images %J Journal of nonlinear sciences and its applications %D 2015 %P 237-245 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.08/ %R 10.22436/jnsa.008.03.08 %G en %F JNSA_2015_8_3_a7
Ege, Ozgur; Karaca, Ismet. Banach fixed point theorem for digital images. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 237-245. doi : 10.22436/jnsa.008.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.08/
[1] Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fund. Math., Volume 3 (1922), pp. 133-181
[2] Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters, Volume 15 (1994), pp. 1003-1011
[3] Some topological properties of discrete surfaces, J. Math. Imaging Vis., Volume 20 (1999), pp. 207-221
[4] Digitally continuous functions, Pattern Recognition Letters, Volume 15 (1994), pp. 833-839
[5] A classical construction for the digital fundamental group, J. Math. Imaging Vis., Volume 10 (1999), pp. 51-62
[6] Properties of digital homotopy, J. Math. Imaging Vis., Volume 22 (2005), pp. 19-26
[7] Digital products, wedges and covering spaces, J. Math. Imaging Vis., Volume 25 (2006), pp. 159-171
[8] Continuous maps on digital simple closed curves, Appl. Math., Volume 1 (2010), pp. 377-386
[9] Fundamental properties of simplicial homology groups for digital images, American Journal of Computer Technology and Application, Volume 1 (2013), pp. 25-42
[10] Lefschetz Fixed Point Theorem for Digital Images, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-13
[11] Applications of the Lefschetz Number to Digital Images, Bull. Belg. Math. Soc. Simon Stevin, Volume 21 (2014), pp. 823-839
[12] An extended digital \((k_0; k_1)\)-continuity, J. Appl. Math. Comput., Volume 16 (2004), pp. 445-452
[13] Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Inform. Sci., Volume 176 (2006), pp. 120-134
[14] Connected sum of digital closed surfaces, Inform. Sci., Volume 176 (2006), pp. 332-348
[15] Oriented surfaces in digital spaces , CVGIP: Graphical Models and Image Processing, Volume 55 (1993), pp. 381-396
[16] On Banach contraction principle in a cone metric space, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 252-258
[17] A new generalization of the Banach contraction principle, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8
[18] Some results on simplicial homology groups of 2D digital images, Int. J. Inform. Computer Sci., Volume 1 (2012), pp. 198-203
[19] A digital fundamental group, Computers and Graphics, Volume 13 (1989), pp. 159-166
[20] A new local property of strong n-surfaces, Pattern Recognition Letters, Volume 20 (1999), pp. 417-428
[21] Digital topology, Amer. Math. Monthly, Volume 86 (1979), pp. 76-87
[22] Fixed point theorems for \(\alpha-\psi\)-contractive type mappings , Nonlinear Anal., Volume 75 (2012), pp. 2154-2165
[23] A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 37-43
Cité par Sources :