Banach fixed point theorem for digital images
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 237-245.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we prove Banach fixed point theorem for digital images. We also give the proof of a theorem which is a generalization of the Banach contraction principle. Finally, we deal with an application of Banach fixed point theorem to image processing.
DOI : 10.22436/jnsa.008.03.08
Classification : 47H10, 54E35, 68U10
Keywords: Digital image, fixed point, Banach contraction principle, digital contraction.

Ege, Ozgur 1 ; Karaca, Ismet 2

1 Department of Mathematics, Celal Bayar University, Muradiye, 45140, Manisa, Turkey
2 Departments of Mathematics, Ege University, Bornova, 35100, Izmir, Turkey
@article{JNSA_2015_8_3_a7,
     author = {Ege, Ozgur and Karaca, Ismet},
     title = {Banach fixed point theorem for digital images},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {237-245},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2015},
     doi = {10.22436/jnsa.008.03.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.08/}
}
TY  - JOUR
AU  - Ege, Ozgur
AU  - Karaca, Ismet
TI  - Banach fixed point theorem for digital images
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 237
EP  - 245
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.08/
DO  - 10.22436/jnsa.008.03.08
LA  - en
ID  - JNSA_2015_8_3_a7
ER  - 
%0 Journal Article
%A Ege, Ozgur
%A Karaca, Ismet
%T Banach fixed point theorem for digital images
%J Journal of nonlinear sciences and its applications
%D 2015
%P 237-245
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.08/
%R 10.22436/jnsa.008.03.08
%G en
%F JNSA_2015_8_3_a7
Ege, Ozgur; Karaca, Ismet. Banach fixed point theorem for digital images. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 237-245. doi : 10.22436/jnsa.008.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.08/

[1] Banach, S. Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fund. Math., Volume 3 (1922), pp. 133-181

[2] Bertrand, G. Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters, Volume 15 (1994), pp. 1003-1011

[3] Bertrand, G.; Malgouyres, R. Some topological properties of discrete surfaces, J. Math. Imaging Vis., Volume 20 (1999), pp. 207-221

[4] Boxer, L. Digitally continuous functions, Pattern Recognition Letters, Volume 15 (1994), pp. 833-839

[5] Boxer, L. A classical construction for the digital fundamental group, J. Math. Imaging Vis., Volume 10 (1999), pp. 51-62

[6] Boxer, L. Properties of digital homotopy, J. Math. Imaging Vis., Volume 22 (2005), pp. 19-26

[7] Boxer, L. Digital products, wedges and covering spaces, J. Math. Imaging Vis., Volume 25 (2006), pp. 159-171

[8] Boxer, L. Continuous maps on digital simple closed curves, Appl. Math., Volume 1 (2010), pp. 377-386

[9] Ege, O.; I. Karaca Fundamental properties of simplicial homology groups for digital images, American Journal of Computer Technology and Application, Volume 1 (2013), pp. 25-42

[10] Ege, O.; Karaca, I. Lefschetz Fixed Point Theorem for Digital Images, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-13

[11] Ege, O.; Karaca, I. Applications of the Lefschetz Number to Digital Images, Bull. Belg. Math. Soc. Simon Stevin, Volume 21 (2014), pp. 823-839

[12] S. E. Han An extended digital \((k_0; k_1)\)-continuity, J. Appl. Math. Comput., Volume 16 (2004), pp. 445-452

[13] Han, S. E. Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Inform. Sci., Volume 176 (2006), pp. 120-134

[14] Han, S. E. Connected sum of digital closed surfaces, Inform. Sci., Volume 176 (2006), pp. 332-348

[15] Herman, G. T. Oriented surfaces in digital spaces , CVGIP: Graphical Models and Image Processing, Volume 55 (1993), pp. 381-396

[16] Jain, Sh.; Jain, Sh.; Jain, L. B. On Banach contraction principle in a cone metric space, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 252-258

[17] Jleli, M.; Samet, B. A new generalization of the Banach contraction principle, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8

[18] Karaca, I.; Ege, O. Some results on simplicial homology groups of 2D digital images, Int. J. Inform. Computer Sci., Volume 1 (2012), pp. 198-203

[19] Kong, T. Y. A digital fundamental group, Computers and Graphics, Volume 13 (1989), pp. 159-166

[20] Malgouyres, R.; Bertrand, G. A new local property of strong n-surfaces, Pattern Recognition Letters, Volume 20 (1999), pp. 417-428

[21] Rosenfeld, A. Digital topology, Amer. Math. Monthly, Volume 86 (1979), pp. 76-87

[22] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for \(\alpha-\psi\)-contractive type mappings , Nonlinear Anal., Volume 75 (2012), pp. 2154-2165

[23] Shatanawi, W.; Nashine, H. K. A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 37-43

Cité par Sources :