Voir la notice de l'article provenant de la source International Scientific Research Publications
Yin, Hong-Ping 1 ; Qi, Feng 2
@article{JNSA_2015_8_3_a6, author = {Yin, Hong-Ping and Qi, Feng}, title = {Hermite--Hadamard type inequalities for the product of (\(\alpha, m\))-convex functions}, journal = {Journal of nonlinear sciences and its applications}, pages = {231-236}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2015}, doi = {10.22436/jnsa.008.03.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.07/} }
TY - JOUR AU - Yin, Hong-Ping AU - Qi, Feng TI - Hermite--Hadamard type inequalities for the product of (\(\alpha, m\))-convex functions JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 231 EP - 236 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.07/ DO - 10.22436/jnsa.008.03.07 LA - en ID - JNSA_2015_8_3_a6 ER -
%0 Journal Article %A Yin, Hong-Ping %A Qi, Feng %T Hermite--Hadamard type inequalities for the product of (\(\alpha, m\))-convex functions %J Journal of nonlinear sciences and its applications %D 2015 %P 231-236 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.07/ %R 10.22436/jnsa.008.03.07 %G en %F JNSA_2015_8_3_a6
Yin, Hong-Ping; Qi, Feng. Hermite--Hadamard type inequalities for the product of (\(\alpha, m\))-convex functions. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 231-236. doi : 10.22436/jnsa.008.03.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.07/
[1] Hermite-Hadamard type inequalities for the m- and (\(\alpha,m\))-logarithmically convex functions, Filomat, Volume 27 (2013), pp. 1-7
[2] Hadamard type inequalities for m-convex and (\(\alpha,m\))-convex functions, JIPAM, J. Inequal. Pure Appl. Math., Volume 9 (2008), pp. 1-12
[3] Some inequalities for m-convex functions, Studia Univ. Babeş-Bolyai Math., Volume 38 (1993), pp. 21-28
[4] A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993
[5] On some inequalities for convex functions, RGMIA Res. Rep. Coll., Suppl., Art. 1, Available online at http://rgmia.org/v6(E).php., 2003
[6] Hermite-Hadamard type integral inequalities for geometric-arithmetically s-convex functions , Analysis (Munich), Volume 33 (2013), pp. 197-208
[7] Some generalizations of the convexity, Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj (1985), pp. 329-338
[8] Hermite-Hadamard type inequalities for functions whose derivatives are of convexities, Nonlinear Funct. Anal. Appl., Volume 18 (2013), pp. 163-176
[9] Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat., Volume 42 (2013), pp. 243-257
[10] Some inequalities of Hermite-Hadamard type for h-convex functions, Adv. Inequal. Appl., Volume 2 (2013), pp. 1-15
[11] Some integral inequalities of Hermite-Hadamard type for extended (s;m)-convex functions, Transylv. J. Math. Mechanics, Volume 5 (2013), pp. 69-84
[12] Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Matematiche (Catania), Volume 68 (2013), pp. 229-239
Cité par Sources :