A stronger inequality of Cîrtoaje's one with power exponential functions
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 224-230.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we will show that $a^{2b} + b^{2a} + r (ab(a - b))^2 \leq 1 $ holds for all $0 \leq a$ and $0 \leq b$ with $a + b = 1$ and all $0 \leq r \leq\frac{1}{2}$. This gives the first example of a stronger inequality of $a^{2b} +b^{2a} \leq 1$.
DOI : 10.22436/jnsa.008.03.06
Classification : 26D10
Keywords: Power-exponential function, monotonically decreasing function, monotonically increasing function.

Miyagi, Mitsuhiro 1 ; Nishizawa, Yusuke 1

1 General Education, Ube National College of Technology, Tokiwadai 2-14-1, Ube, Yamaguchi 755-8555, Japan
@article{JNSA_2015_8_3_a5,
     author = {Miyagi, Mitsuhiro and Nishizawa, Yusuke},
     title = {A stronger inequality of {C{\^\i}rtoaje's} one with power exponential functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {224-230},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2015},
     doi = {10.22436/jnsa.008.03.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.06/}
}
TY  - JOUR
AU  - Miyagi, Mitsuhiro
AU  - Nishizawa, Yusuke
TI  - A stronger inequality of Cîrtoaje's one with power exponential functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 224
EP  - 230
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.06/
DO  - 10.22436/jnsa.008.03.06
LA  - en
ID  - JNSA_2015_8_3_a5
ER  - 
%0 Journal Article
%A Miyagi, Mitsuhiro
%A Nishizawa, Yusuke
%T A stronger inequality of Cîrtoaje's one with power exponential functions
%J Journal of nonlinear sciences and its applications
%D 2015
%P 224-230
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.06/
%R 10.22436/jnsa.008.03.06
%G en
%F JNSA_2015_8_3_a5
Miyagi, Mitsuhiro; Nishizawa, Yusuke. A stronger inequality of Cîrtoaje's one with power exponential functions. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 224-230. doi : 10.22436/jnsa.008.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.06/

[1] Coronel, A.; F. Huancas On the inequality \(a^{2a} +b^{2b} +c^{2c} \geq a^{2b} +b^{2c} +c^{2a}\) , Aust. J. Math. Anal. Appl., Volume 9 (2012), pp. 1-5

[2] Cîrtoaje, V. On some inequalities with power-exponential functions, JIPAM. J. Inequal. Pure Appl. Math., Volume 10 (2009), pp. 1-6

[3] Cîrtoaje, V. Proofs of three open inequalities with power-exponential functions, J. Nonlinear Sci. Appl., Volume 4 (2011), pp. 130-137

[4] Matejicka, L. Proof of one open inequality, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 51-62

[5] Miyagi, M.; Nishizawa, Y. Proof of an open inequality with double power-exponential functions, J. Inequal. Appl., Volume 2013 (2013), pp. 1-11

[6] Miyagi, M.; Nishizawa, Y. A short proof of an open inequality with power-exponential functions, Aust. J. Math. Anal. Appl., Volume 11 (2014), pp. 1-3

Cité par Sources :