Approximate ternary quadratic derivation on ternary Banach algebras and $C^*$-ternary rings revisited
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 218-223.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Recently, Shagholi et al. [S. Shagholi, M. Eshaghi Gordji, M. B. Savadkouhi, J. Comput. Anal. Appl., 13 (2011), 1097-1105] defined ternary quadratic derivations on ternary Banach algebras and proved the Hyers-Ulam stability of ternary quadratic derivations on ternary Banach algebras. But the definition was not well-defined. Using the fixed point method, Bodaghi and Alias [A. Bodaghi, I. A. Alias, Adv. Difference Equ., 2012 (2012), 9 pages] proved the Hyers-Ulam stability and the superstability of ternary quadratic derivations on ternary Banach algebras and $C^*$-ternary rings. There are approximate $\mathbb{C}$-quadraticity conditions in the statements of the theorems and the corollaries, but the proofs for the $\mathbb{C}$-quadraticity were not completed. In this paper, we correct the definition of ternary quadratic derivation and complete the proofs of the theorems and the corollaries.
DOI : 10.22436/jnsa.008.03.05
Classification : 39B52, 13N15, 47H10, 47B47
Keywords: Hyers-Ulam stability, algebra- \(C^*\)-ternary ring, fixed point, quadratic functional equation, algebra-ternary Banach algebra, ternary quadratic derivation.

Park, Choonkill 1 ; Lee, Jung Rye 2

1 Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
2 Department of Mathematics, Daejin University, Kyeonggi 487-711, Korea
@article{JNSA_2015_8_3_a4,
     author = {Park, Choonkill and Lee, Jung Rye},
     title = {Approximate ternary quadratic derivation on ternary {Banach} algebras and {\(C^*\)-ternary} rings revisited},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {218-223},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2015},
     doi = {10.22436/jnsa.008.03.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.05/}
}
TY  - JOUR
AU  - Park, Choonkill
AU  - Lee, Jung Rye
TI  - Approximate ternary quadratic derivation on ternary Banach algebras and \(C^*\)-ternary rings revisited
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 218
EP  - 223
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.05/
DO  - 10.22436/jnsa.008.03.05
LA  - en
ID  - JNSA_2015_8_3_a4
ER  - 
%0 Journal Article
%A Park, Choonkill
%A Lee, Jung Rye
%T Approximate ternary quadratic derivation on ternary Banach algebras and \(C^*\)-ternary rings revisited
%J Journal of nonlinear sciences and its applications
%D 2015
%P 218-223
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.05/
%R 10.22436/jnsa.008.03.05
%G en
%F JNSA_2015_8_3_a4
Park, Choonkill; Lee, Jung Rye. Approximate ternary quadratic derivation on ternary Banach algebras and \(C^*\)-ternary rings revisited. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 218-223. doi : 10.22436/jnsa.008.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.05/

[1] T. Aoki On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[2] Bodaghi, A.; Alias, I. A. Approximate ternary quadratic derivation on ternary Banach algebras and \(C^*\)-ternary rings, Adv. Difference Equ., Volume 2012 (2012), pp. 1-9

[3] Diaz, J.; B. Margolis A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309

[4] Hyers, D. H. On the stability of the linear functional equation, Proc. Natl. Acad. Sci., Volume 27 (1941), pp. 222-224

[5] C. Park Homomorphisms between Poisson \(JC^*\)-algebras, Bull. Braz. Math. Soc., Volume 36 (2005), pp. 79-97

[6] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[7] Shagholi, S.; Gordji, M. Eshaghi; Savadkouhi, M. B. Stability of ternary quadratic derivation on ternary Banach algebras, J. Comput. Anal. Appl., Volume 13 (2011), pp. 1097-1105

[8] Skof, F. Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129

[9] Ulam, S. M. Problems in Modern Mathematics, Chapter V I. Science ed., Wiley, New York, 1940

Cité par Sources :