Some inequalities of Hermite-Hadamard type for n--times differentiable ($\rho, m$)--geometrically convex functions
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 201-217.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, some generalized Hermite-Hadamard type inequalities for n-times differentiable ($\rho, m$)- geometrically convex function are established. The new inequalities recapture and give new estimates of the previous inequalities for first differentiable functions as special cases. The estimates for trapezoid, midpoint, averaged mid-point trapezoid and Simpson's inequalities can also be obtained for higher differentiable generalized geometrically convex functions.
DOI : 10.22436/jnsa.008.03.04
Classification : 26D15, 26A15
Keywords: Hermite-Hadamard inequality, (\(\rho، m\))-geometrically convex functions, n-times differentiable function.

Zafar, Fiza 1 ; Kalsoom, Humaira 1 ; Hussain, Nawab 2

1 Centre for Advanced Studies in Pure and Applied Mathematics (CASPAM), Bahauddin Zakariya University, Multan 60800, Pakistan
2 Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
@article{JNSA_2015_8_3_a3,
     author = {Zafar, Fiza and Kalsoom, Humaira and Hussain, Nawab},
     title = {Some inequalities of {Hermite-Hadamard} type for n--times differentiable (\(\rho, m\))--geometrically convex functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {201-217},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2015},
     doi = {10.22436/jnsa.008.03.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.04/}
}
TY  - JOUR
AU  - Zafar, Fiza
AU  - Kalsoom, Humaira
AU  - Hussain, Nawab
TI  - Some inequalities of Hermite-Hadamard type for n--times differentiable (\(\rho, m\))--geometrically convex functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 201
EP  - 217
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.04/
DO  - 10.22436/jnsa.008.03.04
LA  - en
ID  - JNSA_2015_8_3_a3
ER  - 
%0 Journal Article
%A Zafar, Fiza
%A Kalsoom, Humaira
%A Hussain, Nawab
%T Some inequalities of Hermite-Hadamard type for n--times differentiable (\(\rho, m\))--geometrically convex functions
%J Journal of nonlinear sciences and its applications
%D 2015
%P 201-217
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.04/
%R 10.22436/jnsa.008.03.04
%G en
%F JNSA_2015_8_3_a3
Zafar, Fiza; Kalsoom, Humaira; Hussain, Nawab. Some inequalities of Hermite-Hadamard type for n--times differentiable (\(\rho, m\))--geometrically convex functions. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 201-217. doi : 10.22436/jnsa.008.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.04/

[1] Cerone, P.; Dragomir, S. S. Three point identities and inequalities for n-time differentiable functions, SUT. J., Volume 36 (2000), pp. 351-384

[2] Dragomir, S. S. Two mappings in connection to Hadamard's inequality, J. Math. Anal. Appl., Volume 167 (1992), pp. 49-56

[3] Dragomir, S. S .; Agarwal, R. P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., Volume 11 (1998), pp. 91-95

[4] Dragomir, S. S.; Pečarić, J. E.; Sándor, J. A note on the Jensen-Hadamard's inequality, Anal. Num. Ther. Approx., Volume 19 (1990), pp. 29-34

[5] Masjed-Jamei, M.; Hussain, N. More results on a functional generalization of the Cauchy-Schwarz inequality, J. Inequal. Appl., Volume 2012 (2012), pp. 1-9

[6] P. Montel Sur les functions convexes et les fonctions sousharmoniques, J. Math. Inequal., Volume 9 (1928), pp. 29-60

[7] Özdemir, M. E.; Yildiz, C. New Ostrowski type inequalities for geometrically convex functions, Int. J. Mod. Math. Sci., Volume 8 (2013), pp. 27-35

[8] Xi, Bo-Yan; Bai, Rui-Fang; Feng Qi Hermite-Hadamard type inequalities for the m-and (\(\alpha,m\))-geometrically convex functions, Aequationes Math., Volume 84 (2012), pp. 261-269

[9] X. M. Zhang Geometrically Convex Functions, Anhui University Press(In Chinese). , Hefei , 2004

[10] Zhang, X. M.; Chu, Y. M. The geometrical convexity and concavity of integral for convex and concave functions, Int. J. Mod. Math., Volume 3 (2008), pp. 345-350

[11] Zhang, X. M.; Yang, Z. H. Differential criterion of n-dimensional geometrically convex functions, J. Appl. Anal., Volume 13 (2007), pp. 197-208

[12] Zhang, X. M. An inequality of the Hadamard type for the geometrically convex functions (in Chinese), Math. Pract. Theory, Volume 34 (2004), pp. 171-176

Cité par Sources :