Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhang, Keyu 1 ; Xu, Jiafa 2
@article{JNSA_2015_8_3_a2, author = {Zhang, Keyu and Xu, Jiafa}, title = {Positive solutions for a second-order delay {p--Laplacian} boundary value problem}, journal = {Journal of nonlinear sciences and its applications}, pages = {193-200}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2015}, doi = {10.22436/jnsa.008.03.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.03/} }
TY - JOUR AU - Zhang, Keyu AU - Xu, Jiafa TI - Positive solutions for a second-order delay p--Laplacian boundary value problem JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 193 EP - 200 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.03/ DO - 10.22436/jnsa.008.03.03 LA - en ID - JNSA_2015_8_3_a2 ER -
%0 Journal Article %A Zhang, Keyu %A Xu, Jiafa %T Positive solutions for a second-order delay p--Laplacian boundary value problem %J Journal of nonlinear sciences and its applications %D 2015 %P 193-200 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.03/ %R 10.22436/jnsa.008.03.03 %G en %F JNSA_2015_8_3_a2
Zhang, Keyu; Xu, Jiafa. Positive solutions for a second-order delay p--Laplacian boundary value problem. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 193-200. doi : 10.22436/jnsa.008.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.03/
[1] Global solutions of a singular initial value problem to second order nonlinear delay differential equations, Math. Comput. Modelling, Volume 43 (2006), pp. 854-869
[2] Eigenvalue criteria for existence of multiple positive solutions to boundary value problems of second-order delay differential equations, J. Math. Anal. Appl., Volume 301 (2005), pp. 457-476
[3] Positive solutions and eigenvalue intervals of nonlocal boundary value problems with delays, J. Math. Anal. Appl., Volume 334 (2007), pp. 1152-1166
[4] Positive solutions of second-order two-delay differential systems with twin-parameter, Nonlinear Anal., Volume 63 (2005), pp. 601-617
[5] Positive solutions and eigenvalue regions of two-delay singular systems with a twin parameter, Nonlinear Anal., Volume 66 (2007), pp. 2547-2564
[6] Positive solutions to a type of multi-point boundary value problem with delay and one- dimensional p-Laplacian, Appl. Math. Comput., Volume 208 (2009), pp. 501-510
[7] Existence of multiple periodic solutions for a class of second-order delay differential equations, Nonlinear Anal. Real World Appl., Volume 10 (2009), pp. 3285-3297
[8] Nonlinear Problems in Abstract Cones, Academic Press, Orlando, 1988
[9] Positive solutions for the boundary value problems of one-dimensional p-Laplacian with delay, J. Math. Anal. Appl., Volume 330 (2007), pp. 1238-1248
[10] Existence theory for single and multiple solutions to singular positone boundary value problems for the delay one-dimensional p-Laplacian, Ann. Polon. Math., Volume 81 (2003), pp. 237-259
[11] Differential equations with locally bounded delay, J. Differential Equations, Volume 252 (2012), pp. 3001-3039
[12] Multiplicity results of periodic solutions for a class of second order delay differential systems, Nonlinear Anal., Volume 75 (2012), pp. 5836-5844
[13] Multiple positive solutions for boundary value problems of second order delay differential equations with one-dimensional p-Laplacian, J. Math. Anal. Appl., Volume 326 (2007), pp. 641-654
[14] The existence of multiple positive solutions to boundary value problems of nonlinear delay differential equations with countably many singularities on infinite interval , J. Comput. Appl. Math., Volume 233 (2010), pp. 2189-2199
[15] Positive solutions for a fourth order p-Laplacian boundary value problem, Nonlinear Anal., Volume 74 (2011), pp. 2612-2623
Cité par Sources :