Positive solutions for a second-order delay p--Laplacian boundary value problem
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 193-200.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper investigates the existence and multiplicity of positive solutions for a second-order delay p- Laplacian boundary value problem. By using fixed point index theory, some new existence results are established.
DOI : 10.22436/jnsa.008.03.03
Classification : 34B18, 47H10, 34A34, 26D15
Keywords: p-Laplacian equation, delay, positive solution, fixed point index.

Zhang, Keyu 1 ; Xu, Jiafa 2

1 Department of Mathematics, Qilu Normal University, Jinan 250013, China
2 School of Mathematics, Chongqing Normal University, Chongqing 401331, China
@article{JNSA_2015_8_3_a2,
     author = {Zhang, Keyu and Xu, Jiafa},
     title = {Positive solutions for a second-order delay {p--Laplacian} boundary value problem},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {193-200},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2015},
     doi = {10.22436/jnsa.008.03.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.03/}
}
TY  - JOUR
AU  - Zhang, Keyu
AU  - Xu, Jiafa
TI  - Positive solutions for a second-order delay p--Laplacian boundary value problem
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 193
EP  - 200
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.03/
DO  - 10.22436/jnsa.008.03.03
LA  - en
ID  - JNSA_2015_8_3_a2
ER  - 
%0 Journal Article
%A Zhang, Keyu
%A Xu, Jiafa
%T Positive solutions for a second-order delay p--Laplacian boundary value problem
%J Journal of nonlinear sciences and its applications
%D 2015
%P 193-200
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.03/
%R 10.22436/jnsa.008.03.03
%G en
%F JNSA_2015_8_3_a2
Zhang, Keyu; Xu, Jiafa. Positive solutions for a second-order delay p--Laplacian boundary value problem. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 193-200. doi : 10.22436/jnsa.008.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.03/

[1] Agarwal, R.; Philos, Ch.; P. Tsamatos Global solutions of a singular initial value problem to second order nonlinear delay differential equations, Math. Comput. Modelling, Volume 43 (2006), pp. 854-869

[2] Bai, C.; Ma, J. Eigenvalue criteria for existence of multiple positive solutions to boundary value problems of second-order delay differential equations, J. Math. Anal. Appl., Volume 301 (2005), pp. 457-476

[3] Bai, D.; Xu, Y. Positive solutions and eigenvalue intervals of nonlocal boundary value problems with delays, J. Math. Anal. Appl., Volume 334 (2007), pp. 1152-1166

[4] Bai, D.; Xu, Y. Positive solutions of second-order two-delay differential systems with twin-parameter, Nonlinear Anal., Volume 63 (2005), pp. 601-617

[5] Bai, D.; Xu, Y. Positive solutions and eigenvalue regions of two-delay singular systems with a twin parameter, Nonlinear Anal., Volume 66 (2007), pp. 2547-2564

[6] Du, B.; Hu, X.; Ge, W. Positive solutions to a type of multi-point boundary value problem with delay and one- dimensional p-Laplacian, Appl. Math. Comput., Volume 208 (2009), pp. 501-510

[7] Guo, C.; Guo, Z. Existence of multiple periodic solutions for a class of second-order delay differential equations, Nonlinear Anal. Real World Appl., Volume 10 (2009), pp. 3285-3297

[8] Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones, Academic Press, Orlando, 1988

[9] Jin, C.; J. Yin Positive solutions for the boundary value problems of one-dimensional p-Laplacian with delay, J. Math. Anal. Appl., Volume 330 (2007), pp. 1238-1248

[10] Jiang, D.; Xu, X.; O'Regan, D.; R. Agarwal Existence theory for single and multiple solutions to singular positone boundary value problems for the delay one-dimensional p-Laplacian, Ann. Polon. Math., Volume 81 (2003), pp. 237-259

[11] Walther, H. Differential equations with locally bounded delay, J. Differential Equations, Volume 252 (2012), pp. 3001-3039

[12] Wu, K.; Wu, X.; Zhou, F. Multiplicity results of periodic solutions for a class of second order delay differential systems, Nonlinear Anal., Volume 75 (2012), pp. 5836-5844

[13] Wang, Y.; Zhao, W.; Ge, W. Multiple positive solutions for boundary value problems of second order delay differential equations with one-dimensional p-Laplacian, J. Math. Anal. Appl., Volume 326 (2007), pp. 641-654

[14] Wei, Y.; Wong, P. J. Y.; Ge, W. The existence of multiple positive solutions to boundary value problems of nonlinear delay differential equations with countably many singularities on infinite interval , J. Comput. Appl. Math., Volume 233 (2010), pp. 2189-2199

[15] Xu, J.; Yang, Z. Positive solutions for a fourth order p-Laplacian boundary value problem, Nonlinear Anal., Volume 74 (2011), pp. 2612-2623

Cité par Sources :