Voir la notice de l'article provenant de la source International Scientific Research Publications
Hwang, Guenbo 1
@article{JNSA_2015_8_2_a7, author = {Hwang, Guenbo}, title = {The elliptic {sinh-Gordon} equation in the half plane}, journal = {Journal of nonlinear sciences and its applications}, pages = {163-173}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2015}, doi = {10.22436/jnsa.008.02.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.08/} }
TY - JOUR AU - Hwang, Guenbo TI - The elliptic sinh-Gordon equation in the half plane JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 163 EP - 173 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.08/ DO - 10.22436/jnsa.008.02.08 LA - en ID - JNSA_2015_8_2_a7 ER -
%0 Journal Article %A Hwang, Guenbo %T The elliptic sinh-Gordon equation in the half plane %J Journal of nonlinear sciences and its applications %D 2015 %P 163-173 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.08/ %R 10.22436/jnsa.008.02.08 %G en %F JNSA_2015_8_2_a7
Hwang, Guenbo. The elliptic sinh-Gordon equation in the half plane. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 2, p. 163-173. doi : 10.22436/jnsa.008.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.08/
[1] Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991
[2] Initial-boundary value problems for discrete evolution equations: discrete linear Schrödinger and integrable discrete nonlinear Schrödinger equations, Inverse. Problems, Volume 24 (2004), pp. 1-44
[3] Initial-boundary-value problems for discrete linear evolution equations, IMA J. Appl. Math., Volume 75 (2010), pp. 968-997
[4] Integrable two-dimensional generalisation of the sine- and sinh-Gordon equations, Inverse Problems, Volume 3 (1987), pp. 37-49
[5] A steepest descent method for oscillatory Riemann-Hilbert problems, Bull. Amer. Math. Soc., Volume 26 (1992), pp. 119-123
[6] New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems, Int. Math. Res. Notices, Volume 6 (1997), pp. 286-299
[7] A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London A, Volume 453 (1997), pp. 1411-1443
[8] On the integrability of certain linear and nonlinear partial differential equations, J. Math. Phys., Volume 41 (2000), pp. 4188-4237
[9] Two dimensional linear PDEs in a convex polygon, Proc. Roy. Soc. London A, Volume 457 (2001), pp. 371-393
[10] Integrable nonlinear evolution equations on the half-line, Comm. Math. Phys., Volume 230 (2002), pp. 1-39
[11] The generalized Dirichlet-to-Neumann map for certain nonlinear evolution PDEs, Comm. Pure Appl. Math., Volume LVIII (2005), pp. 639-670
[12] A Unified Approach to Boundary Value Problems, CBMS-NSF regional conference series in applied mathematics, SIAM, 2008
[13] The unified method: I. Non-linearizable problems on the half-line, J. Phys. A: Math. Theor., Volume 45 (2012), pp. 195-201
[14] The Dirichlet-to-Nemann map for the elliptic sine-Gordon equation, Nonlinearity, Volume 25 (2012), pp. 1011-1031
[15] The Fokas method: The Dirichlet to Neumann map for the sine-Gordon equation, Stud. Appl. Math., Volume 132 (2014), pp. 381-406
[16] A perturbative approach for the asymptotic evaluation of the Neumann value corresponding to the Dirichlet datum of a single periodic exponential for the NLS, J. Nonlinear Math. Phys., Volume 21 (2014), pp. 225-247
[17] The modified Korteweg-de Vries equation on the half-line with a sine-wave as Dirichlet datum , J. Nonlinear Math. Phys., Volume 20 (2013), pp. 135-157
[18] Direct and inverse scattering problem associated with the elliptic sinh-Gordon equation, Inverse Problems, Volume 6 (1990), pp. 543-556
[19] The elliptic sine-Gordon equation in a half plane, Nonlinearity, Volume 23 (2010), pp. 77-88
Cité par Sources :