The elliptic sinh-Gordon equation in the half plane
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 2, p. 163-173.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Boundary value problems for the elliptic sinh-Gordon equation formulated in the half plane are studied by applying the so-called Fokas method. The method is a significant extension of the inverse scattering transform, based on the analysis of the Lax pair formulation and the global relation that involves all known and unknown boundary values. In this paper, we derive the formal representation of the solution in terms of the solution of the matrix Riemann-Hilbert problem uniquely defined by the spectral functions. We also present the global relation associated with the elliptic sinh-Gordon equation in the half plane. We in turn show that given appropriate initial and boundary conditions, the unique solution exists provided that the boundary values satisfy the global relation. Furthermore, we verify that the linear limit of the solution coincides with that of the linearized equation known as the modified Helmhotz equation.
DOI : 10.22436/jnsa.008.02.08
Classification : 47K15, 35Q55
Keywords: Boundary value problems, elliptic PDEs, sinh-Gordon equation, integrable equation.

Hwang, Guenbo 1

1 Department of Mathematics, Daegu University, Gyeongsan Gyeongbuk 712-714, Korea
@article{JNSA_2015_8_2_a7,
     author = {Hwang, Guenbo},
     title = {The elliptic {sinh-Gordon} equation in the half plane},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {163-173},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     doi = {10.22436/jnsa.008.02.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.08/}
}
TY  - JOUR
AU  - Hwang, Guenbo
TI  - The elliptic sinh-Gordon equation in the half plane
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 163
EP  - 173
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.08/
DO  - 10.22436/jnsa.008.02.08
LA  - en
ID  - JNSA_2015_8_2_a7
ER  - 
%0 Journal Article
%A Hwang, Guenbo
%T The elliptic sinh-Gordon equation in the half plane
%J Journal of nonlinear sciences and its applications
%D 2015
%P 163-173
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.08/
%R 10.22436/jnsa.008.02.08
%G en
%F JNSA_2015_8_2_a7
Hwang, Guenbo. The elliptic sinh-Gordon equation in the half plane. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 2, p. 163-173. doi : 10.22436/jnsa.008.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.08/

[1] Ablowitz, M. J.; Clarkson, P. A. Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991

[2] Biondini, G.; Hwang, G. Initial-boundary value problems for discrete evolution equations: discrete linear Schrödinger and integrable discrete nonlinear Schrödinger equations, Inverse. Problems, Volume 24 (2004), pp. 1-44

[3] Biondini, G.; D.Wang Initial-boundary-value problems for discrete linear evolution equations, IMA J. Appl. Math., Volume 75 (2010), pp. 968-997

[4] Boiti, M.; Leon, J. J-P.; F. Pempinelli Integrable two-dimensional generalisation of the sine- and sinh-Gordon equations, Inverse Problems, Volume 3 (1987), pp. 37-49

[5] Deift, P.; X. Zhou A steepest descent method for oscillatory Riemann-Hilbert problems, Bull. Amer. Math. Soc., Volume 26 (1992), pp. 119-123

[6] Deift, P.; Venakides, S.; Zhou, X. New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems, Int. Math. Res. Notices, Volume 6 (1997), pp. 286-299

[7] Fokas, A. S. A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London A, Volume 453 (1997), pp. 1411-1443

[8] Fokas, A. S. On the integrability of certain linear and nonlinear partial differential equations, J. Math. Phys., Volume 41 (2000), pp. 4188-4237

[9] Fokas, A. S. Two dimensional linear PDEs in a convex polygon, Proc. Roy. Soc. London A, Volume 457 (2001), pp. 371-393

[10] Fokas, A. S. Integrable nonlinear evolution equations on the half-line, Comm. Math. Phys., Volume 230 (2002), pp. 1-39

[11] Fokas, A. S. The generalized Dirichlet-to-Neumann map for certain nonlinear evolution PDEs, Comm. Pure Appl. Math., Volume LVIII (2005), pp. 639-670

[12] Fokas, A. S. A Unified Approach to Boundary Value Problems, CBMS-NSF regional conference series in applied mathematics, SIAM, 2008

[13] Fokas, A. S.; Lenells, J. The unified method: I. Non-linearizable problems on the half-line, J. Phys. A: Math. Theor., Volume 45 (2012), pp. 195-201

[14] Fokas, A. S.; B. Pelloni The Dirichlet-to-Nemann map for the elliptic sine-Gordon equation, Nonlinearity, Volume 25 (2012), pp. 1011-1031

[15] G. Hwang The Fokas method: The Dirichlet to Neumann map for the sine-Gordon equation, Stud. Appl. Math., Volume 132 (2014), pp. 381-406

[16] Hwang, G. A perturbative approach for the asymptotic evaluation of the Neumann value corresponding to the Dirichlet datum of a single periodic exponential for the NLS, J. Nonlinear Math. Phys., Volume 21 (2014), pp. 225-247

[17] Hwang, G.; Fokas, A. S. The modified Korteweg-de Vries equation on the half-line with a sine-wave as Dirichlet datum , J. Nonlinear Math. Phys., Volume 20 (2013), pp. 135-157

[18] Jaworski, M.; D. Kaup Direct and inverse scattering problem associated with the elliptic sinh-Gordon equation, Inverse Problems, Volume 6 (1990), pp. 543-556

[19] Pelloni, B.; Pinotsis, D. A. The elliptic sine-Gordon equation in a half plane, Nonlinearity, Volume 23 (2010), pp. 77-88

Cité par Sources :