Voir la notice de l'article provenant de la source International Scientific Research Publications
Asgari, Mohammad Sadegh 1 ; Mousavi, Baharak 1
@article{JNSA_2015_8_2_a6, author = {Asgari, Mohammad Sadegh and Mousavi, Baharak}, title = {Coupled fixed point theorems with respect to binary relations in metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {153-162}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2015}, doi = {10.22436/jnsa.008.02.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.07/} }
TY - JOUR AU - Asgari, Mohammad Sadegh AU - Mousavi, Baharak TI - Coupled fixed point theorems with respect to binary relations in metric spaces JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 153 EP - 162 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.07/ DO - 10.22436/jnsa.008.02.07 LA - en ID - JNSA_2015_8_2_a6 ER -
%0 Journal Article %A Asgari, Mohammad Sadegh %A Mousavi, Baharak %T Coupled fixed point theorems with respect to binary relations in metric spaces %J Journal of nonlinear sciences and its applications %D 2015 %P 153-162 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.07/ %R 10.22436/jnsa.008.02.07 %G en %F JNSA_2015_8_2_a6
Asgari, Mohammad Sadegh; Mousavi, Baharak. Coupled fixed point theorems with respect to binary relations in metric spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 2, p. 153-162. doi : 10.22436/jnsa.008.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.07/
[1] Coupled fixed point of generalized contractive mappings on partially ordered G-metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-14
[2] Ladder networks, fixed points and the geometric mean, Circuits Systems Signal Process, Volume 3 (1983), pp. 259-268
[3] Limit of cascade iteration of matrices, Numer. Funct. Anal. Optim., Volume 21 (1980), pp. 579-589
[4] Solving systems of nonlinear matrix equations involving Lipshitzian mappings, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-10
[5] Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem, Appl. Math. Lett., Volume 25 (2012), pp. 1638-1643
[6] Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis., Volume 65 (2006), pp. 1379-1393
[7] On direct methods for solving Poisson's equations, SIAM J. Numer. Anal., Volume 7 (1970), pp. 627-656
[8] Some coupled common fixed points for a pair of mappings in partially ordered G-metric spaces, Mathematical Sciences, Volume 7 (2013), pp. 1-7
[9] On the nonlinear matrix equation \(X - \Sigma^m_{ i=1} A^*_i X^{\delta_i}A_i = Q\), Linear Algebra Appl., Volume 429 (2008), pp. 110-121
[10] On the existence of a positive solution of the matrix equation \(X +A^TX^{-1}A = I\), Linear Algebra Appl., Volume 194 (1993), pp. 91-108
[11] Stabilization of linear systems over a commutative normed algebra with applications to spatially distributed parameter dependent systems, SIAM J. Control Optim., Volume 23 (1985), pp. 1-18
[12] Coupled fixed point theorems in cone metric spaces with a c-distance and applications, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-19
[13] On the Hermitian positive definite solution of the nonlinear matrix equation \(X + A^*X^{-1}A + B^*X^{-1}B = I\), Bull. Braz. Math. Soc., Volume 39 (2008), pp. 371-386
[14] Functional calculus for sequilinear forms and the purification map, Rep. Math. Phys., Volume 8 (1975), pp. 159-170
[15] A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2003), pp. 1435-1443
[16] Coupled fixed point theorems for contraction mapping induced by cone ball-metric in partially ordered spaces, Fixed Point Theory Appl., Volume 12 (2012), pp. 1-18
[17] Coupled fixed point results for nonlinear integral equations, J. Egyptian Math. Soc., Volume 21 (2013), pp. 266-272
[18] Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-16
[19] Coupled common fixed point theorems for \(w^*\)-compatible mappings without mixed monotone property, Rend. Circ. Mat. Palermo, Volume 61 (2012), pp. 361-383
[20] Coupled fixed point theorems for F-invariant set and applications, Appl. Math. Inf. Sci., Volume 7 (2013), pp. 247-255
Cité par Sources :