Coupled fixed point theorems with respect to binary relations in metric spaces
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 2, p. 153-162.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we present a new extension of coupled fixed point theorems in metric spaces endowed with a reflexive binary relation that is not necessarily neither transitive nor antisymmetric. The key feature in this coupled fixed point theorems is that the contractivity condition on the nonlinear map is only assumed to hold on elements that are comparable in the binary relation. Next on the basis of the coupled fixed point theorems, we prove the existence and uniqueness of positive definite solutions of a nonlinear matrix equation.
DOI : 10.22436/jnsa.008.02.07
Classification : 47H10, 15A24, 54H25
Keywords: Coupled fixed point, reflexive relation, matrix equations, positive define solution.

Asgari, Mohammad Sadegh 1 ; Mousavi, Baharak 1

1 Department of Mathematics, Faculty of Science, Islamic Azad University, Central Tehran Branch, Tehran, Iran
@article{JNSA_2015_8_2_a6,
     author = {Asgari, Mohammad Sadegh and Mousavi, Baharak},
     title = {Coupled fixed point theorems with respect to binary relations in metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {153-162},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     doi = {10.22436/jnsa.008.02.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.07/}
}
TY  - JOUR
AU  - Asgari, Mohammad Sadegh
AU  - Mousavi, Baharak
TI  - Coupled fixed point theorems with respect to binary relations in metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 153
EP  - 162
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.07/
DO  - 10.22436/jnsa.008.02.07
LA  - en
ID  - JNSA_2015_8_2_a6
ER  - 
%0 Journal Article
%A Asgari, Mohammad Sadegh
%A Mousavi, Baharak
%T Coupled fixed point theorems with respect to binary relations in metric spaces
%J Journal of nonlinear sciences and its applications
%D 2015
%P 153-162
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.07/
%R 10.22436/jnsa.008.02.07
%G en
%F JNSA_2015_8_2_a6
Asgari, Mohammad Sadegh; Mousavi, Baharak. Coupled fixed point theorems with respect to binary relations in metric spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 2, p. 153-162. doi : 10.22436/jnsa.008.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.02.07/

[1] Abbas, M.; Sintunavarat, W.; Kumam, P. Coupled fixed point of generalized contractive mappings on partially ordered G-metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-14

[2] Anderson, W. N.; Morley, T. D.; Trapp, G. E. Ladder networks, fixed points and the geometric mean, Circuits Systems Signal Process, Volume 3 (1983), pp. 259-268

[3] T. Ando Limit of cascade iteration of matrices, Numer. Funct. Anal. Optim., Volume 21 (1980), pp. 579-589

[4] Berzig, M.; Samet, B. Solving systems of nonlinear matrix equations involving Lipshitzian mappings, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-10

[5] Berzig, M. Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem, Appl. Math. Lett., Volume 25 (2012), pp. 1638-1643

[6] Bhaskar, T. G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis., Volume 65 (2006), pp. 1379-1393

[7] Buzbee, B. L.; Golub, G. H.; C. W. Nielson On direct methods for solving Poisson's equations, SIAM J. Numer. Anal., Volume 7 (1970), pp. 627-656

[8] Chandok, S.; Sintunavarat, W.; P. Kumam Some coupled common fixed points for a pair of mappings in partially ordered G-metric spaces, Mathematical Sciences, Volume 7 (2013), pp. 1-7

[9] Duan, X.; Liao, A.; Tang, B. On the nonlinear matrix equation \(X - \Sigma^m_{ i=1} A^*_i X^{\delta_i}A_i = Q\), Linear Algebra Appl., Volume 429 (2008), pp. 110-121

[10] Engwerda, J. C. On the existence of a positive solution of the matrix equation \(X +A^TX^{-1}A = I\), Linear Algebra Appl., Volume 194 (1993), pp. 91-108

[11] Green, W. L.; Kamen, E. Stabilization of linear systems over a commutative normed algebra with applications to spatially distributed parameter dependent systems, SIAM J. Control Optim., Volume 23 (1985), pp. 1-18

[12] Karapinar, E.; Sintunavarat, W.; Kumam, P. Coupled fixed point theorems in cone metric spaces with a c-distance and applications, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-19

[13] Long, J. H.; Hu, X. Y.; Zhang, L. On the Hermitian positive definite solution of the nonlinear matrix equation \(X + A^*X^{-1}A + B^*X^{-1}B = I\), Bull. Braz. Math. Soc., Volume 39 (2008), pp. 371-386

[14] Pusz, W.; Woronowitz, S. L. Functional calculus for sequilinear forms and the purification map, Rep. Math. Phys., Volume 8 (1975), pp. 159-170

[15] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2003), pp. 1435-1443

[16] Sintunavarat, W.; Cho, Y. J.; Kumam, P. Coupled fixed point theorems for contraction mapping induced by cone ball-metric in partially ordered spaces, Fixed Point Theory Appl., Volume 12 (2012), pp. 1-18

[17] Sintunavarat, W.; Kumam, P. Coupled fixed point results for nonlinear integral equations, J. Egyptian Math. Soc., Volume 21 (2013), pp. 266-272

[18] Sintunavarat, W.; Kumam, P.; Cho, Y. J. Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-16

[19] Sintunavarat, W.; Petruşel, A.; Kumam, P. Coupled common fixed point theorems for \(w^*\)-compatible mappings without mixed monotone property, Rend. Circ. Mat. Palermo, Volume 61 (2012), pp. 361-383

[20] Sintunavarat, W.; Radenović, S.; Golubović, Z.; Kumam, P. Coupled fixed point theorems for F-invariant set and applications, Appl. Math. Inf. Sci., Volume 7 (2013), pp. 247-255

Cité par Sources :