Voir la notice de l'article provenant de la source International Scientific Research Publications
$11[f(x + 2y) + f(x - 2y)] = 44[f(x + y) + f(x - y)] + 12f(3y) - 48f(2y) + 60f(y) - 66f(x)$ |
Wang, Zhihua 1 ; Sahoo, Prasanna K. 2
@article{JNSA_2015_8_1_a7, author = {Wang, Zhihua and Sahoo, Prasanna K.}, title = {Stability of an {ACQ-functional} equation in various matrix normed spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {64-85}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2015}, doi = {10.22436/jnsa.008.01.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.08/} }
TY - JOUR AU - Wang, Zhihua AU - Sahoo, Prasanna K. TI - Stability of an ACQ-functional equation in various matrix normed spaces JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 64 EP - 85 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.08/ DO - 10.22436/jnsa.008.01.08 LA - en ID - JNSA_2015_8_1_a7 ER -
%0 Journal Article %A Wang, Zhihua %A Sahoo, Prasanna K. %T Stability of an ACQ-functional equation in various matrix normed spaces %J Journal of nonlinear sciences and its applications %D 2015 %P 64-85 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.08/ %R 10.22436/jnsa.008.01.08 %G en %F JNSA_2015_8_1_a7
Wang, Zhihua; Sahoo, Prasanna K. Stability of an ACQ-functional equation in various matrix normed spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 1, p. 64-85. doi : 10.22436/jnsa.008.01.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.08/
[1] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66
[2] Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., Volume 11 (2003), pp. 687-705
[3] On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber., Volume 346 (2004), pp. 43-52
[4] A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309
[5] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436
[6] Stability of an additive-cubic-quartic functional equation, Adv. Diff. Equ., Article ID 395693, Volume 2009 (2009), pp. 1-20
[7] Generalized contraction mapping principles in probabilistic metric spaces, Acta Math. Hungar., Volume 101 (2003), pp. 131-148
[8] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224
[9] Stability of functional equations in several variables, Birkhäuser, Basel, 1998
[10] Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Science, New York, 2011
[11] Functional equations and inequalities with applications, Springer Science, New York, 2009
[12] Nonlinear fuzzy approximation of a mixed type ACQ functional equation via fixed point alternative, Math. Sci., Article ID 54, Volume 6 (2012), pp. 1-10
[13] An AQCQ-functional equation in Matrix normed spaces, Result. Math., Volume 64 (2013), pp. 305-318
[14] Hyers-Ulam stability of functional equations in matrix normed spaces, J. Ineq. Appl., Article ID 22, Volume 2013 (2013), pp. 1-11
[15] On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 567-572
[16] Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, Volume 159 (2008), pp. 730-738
[17] Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, Volume 159 (2008), pp. 720-729
[18] Fuzzy almost quadratic functions, Result. Math., Volume 52 (2008), pp. 161-177
[19] Fuzzy approximately cubic mappings, Inform. Sci., Volume 178 (2008), pp. 3791-3798
[20] An AQCQ-functional equation in matrix Banach spaces, Adv. Diff. Equ., Article ID 146, Volume 2013 (2013), pp. 1-15
[21] Functional equations and inequalities in matrix paranormed spaces, J. Ineq. Appl., Article ID 547, Volume 2013 (2013), pp. 1-13
[22] Fuzzy stability of functional inequalities in matrix fuzzy normed spaces, J. Ineq. Appl., Article ID 224, Volume 2013 (2013), pp. 1-28
[23] The fixed point alternative and the stability of functional equations, Sem. Fixed Point Theory, Volume 4 (2003), pp. 91-96
[24] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[25] Functional equations, inequalities and applications, Kluwer Academic, Dordrecht, 2003
[26] Introduction to functional equations, CRC Press, Boca Raton, 2011
[27] Stability of an additive-cubic-quartic functional equation in mutil-Banach spaces, Abst. Appl. Anal., Article ID 536520, Volume 2011 (2011), pp. 1-11
[28] Problems in modern mathematics, Chapter VI, Science Editions, Wiley, New York, 1964
Cité par Sources :