Stability of an ACQ-functional equation in various matrix normed spaces
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 1, p. 64-85.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Using the direct method and the fixed point method, we prove the Hyers-Ulam stability of the following additive-cubic-quartic (ACQ ) functional equation
$11[f(x + 2y) + f(x - 2y)] = 44[f(x + y) + f(x - y)] + 12f(3y) - 48f(2y) + 60f(y) - 66f(x)$
in matrix Banach spaces. Furthermore, using the fixed point method, we also prove the Hyers-Ulam stability of the above functional equation in matrix fuzzy normed spaces.
DOI : 10.22436/jnsa.008.01.08
Classification : 47L25, 39B82, 39B72, 46L07
Keywords: Fixed point method, Hyers-Ulam stability, matrix Banach space, matrix fuzzy normed space, additive-cubic-quartic functional equation.

Wang, Zhihua 1 ; Sahoo, Prasanna K. 2

1 School of Science, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
2 Department of Mathematics, University of Louisville, Louisville, KY 40292, USA
@article{JNSA_2015_8_1_a7,
     author = {Wang, Zhihua and Sahoo, Prasanna K.},
     title = {Stability of an {ACQ-functional} equation in various matrix normed spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {64-85},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     doi = {10.22436/jnsa.008.01.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.08/}
}
TY  - JOUR
AU  - Wang, Zhihua
AU  - Sahoo, Prasanna K.
TI  - Stability of an ACQ-functional equation in various matrix normed spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 64
EP  - 85
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.08/
DO  - 10.22436/jnsa.008.01.08
LA  - en
ID  - JNSA_2015_8_1_a7
ER  - 
%0 Journal Article
%A Wang, Zhihua
%A Sahoo, Prasanna K.
%T Stability of an ACQ-functional equation in various matrix normed spaces
%J Journal of nonlinear sciences and its applications
%D 2015
%P 64-85
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.08/
%R 10.22436/jnsa.008.01.08
%G en
%F JNSA_2015_8_1_a7
Wang, Zhihua; Sahoo, Prasanna K. Stability of an ACQ-functional equation in various matrix normed spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 1, p. 64-85. doi : 10.22436/jnsa.008.01.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.08/

[1] T. Aoki On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[2] Bag, T.; Samanta, S. K. Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., Volume 11 (2003), pp. 687-705

[3] Cădariu, L.; Radu, V. On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber., Volume 346 (2004), pp. 43-52

[4] Diaz, J. B.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309

[5] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436

[6] Gordji, M. E.; Gharetapeh, S. K.; Park, C.; Zolfaghari, S. Stability of an additive-cubic-quartic functional equation, Adv. Diff. Equ., Article ID 395693, Volume 2009 (2009), pp. 1-20

[7] Hadžić, O.; Pap, E.; Radu, V. Generalized contraction mapping principles in probabilistic metric spaces, Acta Math. Hungar., Volume 101 (2003), pp. 131-148

[8] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224

[9] Hyers, D. H.; Isac, G.; Rassias, Th. M. Stability of functional equations in several variables, Birkhäuser, Basel, 1998

[10] Jung, S. M. Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Science, New York, 2011

[11] Kannappan, Pl. Functional equations and inequalities with applications, Springer Science, New York, 2009

[12] Kenary, H. Nonlinear fuzzy approximation of a mixed type ACQ functional equation via fixed point alternative, Math. Sci., Article ID 54, Volume 6 (2012), pp. 1-10

[13] Lee, J. R.; Park, C.; Shin, D. An AQCQ-functional equation in Matrix normed spaces, Result. Math., Volume 64 (2013), pp. 305-318

[14] Lee, J. R.; Shin, D.; Park, C. Hyers-Ulam stability of functional equations in matrix normed spaces, J. Ineq. Appl., Article ID 22, Volume 2013 (2013), pp. 1-11

[15] Miheţ, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 567-572

[16] Mirmostafaee, A. K.; Mirzavaziri, M.; Moslehian, M. S. Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, Volume 159 (2008), pp. 730-738

[17] Mirmostafaee, A. K.; Moslehian, M. S. Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, Volume 159 (2008), pp. 720-729

[18] Mirmostafaee, A. K.; Moslehian, M. S. Fuzzy almost quadratic functions, Result. Math., Volume 52 (2008), pp. 161-177

[19] Mirmostafaee, A. K.; Moslehian, M. S. Fuzzy approximately cubic mappings, Inform. Sci., Volume 178 (2008), pp. 3791-3798

[20] Park, C.; Lee, J. R.; Shin, D. An AQCQ-functional equation in matrix Banach spaces, Adv. Diff. Equ., Article ID 146, Volume 2013 (2013), pp. 1-15

[21] Park, C.; Lee, J. R.; Shin, D. Functional equations and inequalities in matrix paranormed spaces, J. Ineq. Appl., Article ID 547, Volume 2013 (2013), pp. 1-13

[22] Park, C.; Shin, D.; Lee, J. R. Fuzzy stability of functional inequalities in matrix fuzzy normed spaces, J. Ineq. Appl., Article ID 224, Volume 2013 (2013), pp. 1-28

[23] Radu, V. The fixed point alternative and the stability of functional equations, Sem. Fixed Point Theory, Volume 4 (2003), pp. 91-96

[24] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[25] Rassias, Th. M. Functional equations, inequalities and applications, Kluwer Academic, Dordrecht, 2003

[26] Sahoo, P. K.; Kannappan, Pl. Introduction to functional equations, CRC Press, Boca Raton, 2011

[27] Wang, Z.; Li, X.; Rassias, Th. M. Stability of an additive-cubic-quartic functional equation in mutil-Banach spaces, Abst. Appl. Anal., Article ID 536520, Volume 2011 (2011), pp. 1-11

[28] Ulam, S. M. Problems in modern mathematics, Chapter VI, Science Editions, Wiley, New York, 1964

Cité par Sources :