On $\nabla^{**}$-distance and fixed point theorems in generalized partially ordered $D^*$-metric spaces
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 1, p. 46-54.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce a new concept on a complete generalized $D^*$-metric space by using the concept of generalized $D^*$-metric space ($D^*$-cone metric space) called $\nabla^{**}$-distance and, by using the concept of the $\nabla^{**}$-distance we prove some new fixed point theorems in complete partially ordered generalized $D^*$-metric space which is the main result of our paper.
DOI : 10.22436/jnsa.008.01.06
Classification : 47H10, 54H25
Keywords: Fixed point theorem, generalized \(D^*\)-metric spaces, \(\nabla^{**}\)-distance.

Jumaili, Alaa Mahmood AL. 1 ; Yang, Xiao Song 2

1 School of Mathematics and Statistics, Huazhong University of Science and Technology Wuhan city, Hubei province, Post. No. 430074, China
2 School of Mathematics and Statistics, Huazhong University of Science and Technology Wuhan city, Hubei province, Post. No. 430074, China
@article{JNSA_2015_8_1_a5,
     author = {Jumaili, Alaa Mahmood AL. and Yang, Xiao Song},
     title = {On \(\nabla^{**}\)-distance and fixed point theorems in generalized partially ordered {\(D^*\)-metric} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {46-54},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     doi = {10.22436/jnsa.008.01.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.06/}
}
TY  - JOUR
AU  - Jumaili, Alaa Mahmood AL.
AU  - Yang, Xiao Song
TI  - On \(\nabla^{**}\)-distance and fixed point theorems in generalized partially ordered \(D^*\)-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 46
EP  - 54
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.06/
DO  - 10.22436/jnsa.008.01.06
LA  - en
ID  - JNSA_2015_8_1_a5
ER  - 
%0 Journal Article
%A Jumaili, Alaa Mahmood AL.
%A Yang, Xiao Song
%T On \(\nabla^{**}\)-distance and fixed point theorems in generalized partially ordered \(D^*\)-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2015
%P 46-54
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.06/
%R 10.22436/jnsa.008.01.06
%G en
%F JNSA_2015_8_1_a5
Jumaili, Alaa Mahmood AL.; Yang, Xiao Song. On \(\nabla^{**}\)-distance and fixed point theorems in generalized partially ordered \(D^*\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 1, p. 46-54. doi : 10.22436/jnsa.008.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.06/

[1] Agarwal, R. P.; El-Gebeily, M. A.; O'Regan, D. Generalized contractions in partially ordered metric spaces , Appl. Anal., Volume 87 (2008), pp. 1-8

[2] Aage, C. T.; Salunke, J. N. Some fixed points theorems in generalized \(D^*\)-metric spaces, Appl. Sci., Volume 12 (2010), pp. 1-13

[3] Jumaili, A. M. AL.; Yang, X. S. Fixed point theorems and \(\nabla^{**}\)-distance in partially ordered \(D^*\)-metric spaces, Int. J. Math. Anal., Volume 6 (2012), pp. 2949-2955

[4] Ćirić, L. B. A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273

[5] Ćirić, L. B. Coincidence and fixed points for maps on topological spaces, Topology Appl., Volume 154 (2007), pp. 3100-3106

[6] Ćirić, L. B.; Jesić, S. N.; Milovanović, M. M.; Ume, J. S. On the steepest descent approximation method for the zeros of generalized accretive operators , Nonlinear Anal.-TMA., Volume 69 (2008), pp. 763-769

[7] Dhage, B. C. Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math, Soc., Volume 84 (1992), pp. 329-336

[8] Fang, J. X.; Y. Gao Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear Anal.-TMA., Volume 70 (2009), pp. 184-193

[9] Bhaskar, T. Gnana; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal.-TMA., Volume 65 (2006), pp. 1379-1393

[10] Bhaskar, T. Gnana; Lakshmikantham, V.; Devi, J. Vasundhara Monotone iterative technique for functional differential equations with retardation and anticipation, Nonlinear Anal.-TMA., Volume 66 (2007), pp. 2237-2242

[11] Hussain, N. Common fixed points in best approximation for Banach operator pairs with Ćirić type I-contractions, J. Math. Anal. Appl., Volume 338 (2008), pp. 1351-1363

[12] Nieto, J. J.; Lopez, R. R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, Volume 22 (2005), pp. 223-239

[13] Nguyen, V. L.; Nguyen, X. T. Common fixed point theorem in compact \(D^*\)-metric spaces, Int. Math. Forum, Volume 6 (2011), pp. 605-612

[14] Nieto, J. J.; Lopez, R. R. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. Eng. Ser., Volume 23 (2007), pp. 2205-2212

[15] O'Regan, D.; R. Saadati Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput., Volume 195 (2008), pp. 86-93

[16] Petruşel, A.; Rus, I. A. Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 411-418

[17] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some applications to matrix equations , Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1435-1443

[18] Sedghi, S.; Shobe, N.; Zhou, H. A common fixed point theorem in \(D^*\)-metric spaces, Fixed Point Theory and Applications. Article ID 27906 (2007), pp. 1-13

[19] Saadati, R.; Vaezpour, S. M.; Vetro, P.; Rhoades, B. E. Fixed point theorems in generalized partially ordered G-metric spaces, Mathematical and Computer Modelling, Volume 52 (2010), pp. 797-801

[20] Veerapandi, T.; Pillai, A. M. Some common fixed point theorems in \(D^*\)- metric spaces , African J. Math. Computer Sci. Research, Volume 4 (2011), pp. 357-367

[21] Veerapandi, T.; Pillai, A. M. A common fixed point theorems in \(D^*\)- metric spaces, African J. Math. Computer Sci. Research, Volume 4 (8) (2011), pp. 273-280

Cité par Sources :