Voir la notice de l'article provenant de la source International Scientific Research Publications
Jumaili, Alaa Mahmood AL. 1 ; Yang, Xiao Song 2
@article{JNSA_2015_8_1_a5, author = {Jumaili, Alaa Mahmood AL. and Yang, Xiao Song}, title = {On \(\nabla^{**}\)-distance and fixed point theorems in generalized partially ordered {\(D^*\)-metric} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {46-54}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2015}, doi = {10.22436/jnsa.008.01.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.06/} }
TY - JOUR AU - Jumaili, Alaa Mahmood AL. AU - Yang, Xiao Song TI - On \(\nabla^{**}\)-distance and fixed point theorems in generalized partially ordered \(D^*\)-metric spaces JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 46 EP - 54 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.06/ DO - 10.22436/jnsa.008.01.06 LA - en ID - JNSA_2015_8_1_a5 ER -
%0 Journal Article %A Jumaili, Alaa Mahmood AL. %A Yang, Xiao Song %T On \(\nabla^{**}\)-distance and fixed point theorems in generalized partially ordered \(D^*\)-metric spaces %J Journal of nonlinear sciences and its applications %D 2015 %P 46-54 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.06/ %R 10.22436/jnsa.008.01.06 %G en %F JNSA_2015_8_1_a5
Jumaili, Alaa Mahmood AL.; Yang, Xiao Song. On \(\nabla^{**}\)-distance and fixed point theorems in generalized partially ordered \(D^*\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 1, p. 46-54. doi : 10.22436/jnsa.008.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.06/
[1] Generalized contractions in partially ordered metric spaces , Appl. Anal., Volume 87 (2008), pp. 1-8
[2] Some fixed points theorems in generalized \(D^*\)-metric spaces, Appl. Sci., Volume 12 (2010), pp. 1-13
[3] Fixed point theorems and \(\nabla^{**}\)-distance in partially ordered \(D^*\)-metric spaces, Int. J. Math. Anal., Volume 6 (2012), pp. 2949-2955
[4] A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273
[5] Coincidence and fixed points for maps on topological spaces, Topology Appl., Volume 154 (2007), pp. 3100-3106
[6] On the steepest descent approximation method for the zeros of generalized accretive operators , Nonlinear Anal.-TMA., Volume 69 (2008), pp. 763-769
[7] Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math, Soc., Volume 84 (1992), pp. 329-336
[8] Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear Anal.-TMA., Volume 70 (2009), pp. 184-193
[9] Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal.-TMA., Volume 65 (2006), pp. 1379-1393
[10] Monotone iterative technique for functional differential equations with retardation and anticipation, Nonlinear Anal.-TMA., Volume 66 (2007), pp. 2237-2242
[11] Common fixed points in best approximation for Banach operator pairs with Ćirić type I-contractions, J. Math. Anal. Appl., Volume 338 (2008), pp. 1351-1363
[12] Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, Volume 22 (2005), pp. 223-239
[13] Common fixed point theorem in compact \(D^*\)-metric spaces, Int. Math. Forum, Volume 6 (2011), pp. 605-612
[14] Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. Eng. Ser., Volume 23 (2007), pp. 2205-2212
[15] Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput., Volume 195 (2008), pp. 86-93
[16] Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 411-418
[17] A fixed point theorem in partially ordered sets and some applications to matrix equations , Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1435-1443
[18] A common fixed point theorem in \(D^*\)-metric spaces, Fixed Point Theory and Applications. Article ID 27906 (2007), pp. 1-13
[19] Fixed point theorems in generalized partially ordered G-metric spaces, Mathematical and Computer Modelling, Volume 52 (2010), pp. 797-801
[20] Some common fixed point theorems in \(D^*\)- metric spaces , African J. Math. Computer Sci. Research, Volume 4 (2011), pp. 357-367
[21] A common fixed point theorems in \(D^*\)- metric spaces, African J. Math. Computer Sci. Research, Volume 4 (8) (2011), pp. 273-280
Cité par Sources :