Singular values and fixed points of family of generating function of Bernoullis numbers
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 1, p. 17-22.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Singular values and fixed points of one parameter family of generating function of Bernoulli's numbers, $g_\lambda(z) = \lambda\frac{z}{e^z-1} , \lambda\in \mathbb{R}-\{0\}$, are investigated. It is shown that the function $g_\lambda(z)$ has infinitely many singular values and its critical values lie outside the open disk centered at origin and having radius $\lambda$. Further, the real fixed points of $g_\lambda(z)$ and their nature are determined. The results found are compared with the functions $\lambda\tan z, E_\lambda(z) = \lambda \frac{e^z-1}{z}$ and$ f_\lambda(z) = \lambda \frac{z}{z+4}e^z$ for $\lambda > 0$.
DOI : 10.22436/jnsa.008.01.03
Classification : 30D05, 37C25, 58K05
Keywords: Fixed points, critical values, singular values.

Sajid, Mohammad 1

1 College of Engineering, Qassim University, Buraidah, Al-Qassim, Saudi Arabia
@article{JNSA_2015_8_1_a2,
     author = {Sajid, Mohammad},
     title = {Singular values and fixed points of family of generating function of {Bernoullis} numbers},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {17-22},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     doi = {10.22436/jnsa.008.01.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.03/}
}
TY  - JOUR
AU  - Sajid, Mohammad
TI  - Singular values and fixed points of family of generating function of Bernoullis numbers
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 17
EP  - 22
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.03/
DO  - 10.22436/jnsa.008.01.03
LA  - en
ID  - JNSA_2015_8_1_a2
ER  - 
%0 Journal Article
%A Sajid, Mohammad
%T Singular values and fixed points of family of generating function of Bernoullis numbers
%J Journal of nonlinear sciences and its applications
%D 2015
%P 17-22
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.03/
%R 10.22436/jnsa.008.01.03
%G en
%F JNSA_2015_8_1_a2
Sajid, Mohammad. Singular values and fixed points of family of generating function of Bernoullis numbers. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 1, p. 17-22. doi : 10.22436/jnsa.008.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.03/

[1] A. F. Beardon Iteration of Rational Functions, Springer, New York, 1991

[2] Devaney, R. L.; Keen, L. Dynamics of meromorphic maps: Maps with polynomial Schwarzian derivative, Ann. Sci. Ec. Norm. Sup., Volume 22 (1989), pp. 55-79

[3] Hua, X. H.; Yang, C. C. Dynamics of Transcendental Functions, Gordon and Breach Sci. Pub., Amsterdam, 1998

[4] Ireland, K.; M. Rosen A Classical Introduction to Modern Number Theory, 2nd Ed., Springer-Verlag, New York, 1998

[5] Kapoor, G. P.; M. Guru Prem Prasad Dynamics of \(\frac{(e^z -1)}{z}\): the Julia set and Bifurcation, Ergod. Th. Dynam. Sys., Volume 18 (1998), pp. 1363-1383

[6] Morosawa, S.; Nishimura, Y.; Taniguchi, M.; Ueda, T. Holomorphic Dynamics, Cambridge University Press, Cambridge, 2000

[7] Nayak, T.; Prasad, M. Guru Prem Iteration of certain meromorphic functions with unbounded singular values, Ergod. Th. Dynam. Sys., Volume 30 (2010), pp. 877-891

[8] Prasad, M. Guru Prem Chaotic burst in the dynamics of \(f_\lambda(z) = \lambda \frac{\sinh(z)}{ z}\), Regul. Chaotic Dyn., Volume 10 (2005), pp. 71-80

[9] M. Guru Prem Prasad Tarakanta Nayak, Dynamics of certain class of critically bounded entire transcendental functions, J. Math. Anal. Appl., Volume 329 (2007), pp. 1446-1459

[10] Rottenfusser, G.; Ruckert, J.; Rempe, L.; Schleicher, D. Dynamics rays of bounded-type entire functions, Ann. Math., Volume 173 (2011), pp. 77-125

[11] Sajid, M.; Kapoor, G. P. Dynamics of a family of non-critically finite even transcendental meromorphic functions, Regul Chaotic Dyn., Volume 9 (2004), pp. 143-162

[12] M. Sajid Real and complex dynamics of one parameter family of meromorphic functions, Far East J. Dynamical Sys., Volume 19 (2012), pp. 89-105

[13] Zheng, J. Singular Values of Meromorphic Functions, Value Distribution of Meromorphic Functions, Springer (2011), pp. 229-266

Cité par Sources :