Some common coupled fixed point theorems for generalized contraction in $b$-metric spaces
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 1, p. 8-16.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this paper is to prove the existence and uniqueness of a common coupled fixed point for a pair of mappings in a complete $b$-metric space in view of diverse contractive conditions. In addition, as a bi-product we obtain several new common coupled fixed point theorems.
DOI : 10.22436/jnsa.008.01.02
Classification : 47H10, 54H25
Keywords: Common fixed point, coupled fixed point, coupled coincidence point, contractive mappings, b-metric spaces.

Malhotra, Nidhi 1 ; Bansal, Bindu 1

1 Department of Mathematics, Hindu College, University of Delhi, Delhi, India
@article{JNSA_2015_8_1_a1,
     author = {Malhotra, Nidhi and Bansal, Bindu},
     title = {Some common coupled fixed point theorems for generalized contraction in \(b\)-metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {8-16},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2015},
     doi = {10.22436/jnsa.008.01.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.02/}
}
TY  - JOUR
AU  - Malhotra, Nidhi
AU  - Bansal, Bindu
TI  - Some common coupled fixed point theorems for generalized contraction in \(b\)-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 8
EP  - 16
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.02/
DO  - 10.22436/jnsa.008.01.02
LA  - en
ID  - JNSA_2015_8_1_a1
ER  - 
%0 Journal Article
%A Malhotra, Nidhi
%A Bansal, Bindu
%T Some common coupled fixed point theorems for generalized contraction in \(b\)-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2015
%P 8-16
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.02/
%R 10.22436/jnsa.008.01.02
%G en
%F JNSA_2015_8_1_a1
Malhotra, Nidhi; Bansal, Bindu. Some common coupled fixed point theorems for generalized contraction in \(b\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 1, p. 8-16. doi : 10.22436/jnsa.008.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.02/

[1] Akkouchi, M. A common fixed point theorem for expansive mappings under strict implicit conditions on b-metric spaces, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., Volume 50 (2011), pp. 5-15

[2] Aydi, H.; Bota, M. F.; Karapinar, E.; Mitrović, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-8

[3] Bakhtin, I. A. The contraction mapping principle in quasimetric spaces, Functional Analysis, Volume 30 (1989), pp. 26-37

[4] Boriceanu, M. Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Studia Univ. Babes-Bolyai Math., Volume 3 (2009), pp. 1-14

[5] S. Czerwik Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[6] Bhaskar, T. Gnana; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: TMA, Volume 65 (2006), pp. 1379-1393

[7] Hussain, N.; Dorić, D.; Kadelburg, Z.; S. Radenović Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12

[8] Jovanović, M.; Kadelburg, Z.; Radenović, S. Common fixed point results in metric-type spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-15

[9] Kir, M.; Kiziltunc, H. On some well known fixed point theorems in b-metric spaces, Turkish J. Anal. Number Theory, Volume 1 (2013), pp. 13-16

[10] Olatinwo, M. O.; Imoru, C. O. A generalization of some results on multi-valued weakly Picard mappings in b-metric space, Fasciculi Mathematici, Volume 40 (2008), pp. 45-56

[11] M. Păcurar A fixed point result for \(\phi\)-contractions on b- metric spaces without the boundedness assumption , Fasc. Math., Volume 43 (2010), pp. 127-137

Cité par Sources :