Voir la notice de l'article provenant de la source International Scientific Research Publications
Malhotra, Nidhi 1 ; Bansal, Bindu 1
@article{JNSA_2015_8_1_a1, author = {Malhotra, Nidhi and Bansal, Bindu}, title = {Some common coupled fixed point theorems for generalized contraction in \(b\)-metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {8-16}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2015}, doi = {10.22436/jnsa.008.01.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.02/} }
TY - JOUR AU - Malhotra, Nidhi AU - Bansal, Bindu TI - Some common coupled fixed point theorems for generalized contraction in \(b\)-metric spaces JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 8 EP - 16 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.02/ DO - 10.22436/jnsa.008.01.02 LA - en ID - JNSA_2015_8_1_a1 ER -
%0 Journal Article %A Malhotra, Nidhi %A Bansal, Bindu %T Some common coupled fixed point theorems for generalized contraction in \(b\)-metric spaces %J Journal of nonlinear sciences and its applications %D 2015 %P 8-16 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.02/ %R 10.22436/jnsa.008.01.02 %G en %F JNSA_2015_8_1_a1
Malhotra, Nidhi; Bansal, Bindu. Some common coupled fixed point theorems for generalized contraction in \(b\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 1, p. 8-16. doi : 10.22436/jnsa.008.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.01.02/
[1] A common fixed point theorem for expansive mappings under strict implicit conditions on b-metric spaces, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., Volume 50 (2011), pp. 5-15
[2] A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-8
[3] The contraction mapping principle in quasimetric spaces, Functional Analysis, Volume 30 (1989), pp. 26-37
[4] Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Studia Univ. Babes-Bolyai Math., Volume 3 (2009), pp. 1-14
[5] Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[6] Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: TMA, Volume 65 (2006), pp. 1379-1393
[7] Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12
[8] Common fixed point results in metric-type spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-15
[9] On some well known fixed point theorems in b-metric spaces, Turkish J. Anal. Number Theory, Volume 1 (2013), pp. 13-16
[10] A generalization of some results on multi-valued weakly Picard mappings in b-metric space, Fasciculi Mathematici, Volume 40 (2008), pp. 45-56
[11] A fixed point result for \(\phi\)-contractions on b- metric spaces without the boundedness assumption , Fasc. Math., Volume 43 (2010), pp. 127-137
Cité par Sources :