Voir la notice de l'article provenant de la source International Scientific Research Publications
Gaiko, Valery A. 1
@article{JNSA_2014_7_6_a5, author = {Gaiko, Valery A.}, title = {Global {Bifurcation} {Analysis} of the {Lorenz} {System}}, journal = {Journal of nonlinear sciences and its applications}, pages = {429-434}, publisher = {mathdoc}, volume = {7}, number = {6}, year = {2014}, doi = {10.22436/jnsa.007.06.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.06/} }
TY - JOUR AU - Gaiko, Valery A. TI - Global Bifurcation Analysis of the Lorenz System JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 429 EP - 434 VL - 7 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.06/ DO - 10.22436/jnsa.007.06.06 LA - en ID - JNSA_2014_7_6_a5 ER -
%0 Journal Article %A Gaiko, Valery A. %T Global Bifurcation Analysis of the Lorenz System %J Journal of nonlinear sciences and its applications %D 2014 %P 429-434 %V 7 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.06/ %R 10.22436/jnsa.007.06.06 %G en %F JNSA_2014_7_6_a5
Gaiko, Valery A. Global Bifurcation Analysis of the Lorenz System. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 6, p. 429-434. doi : 10.22436/jnsa.007.06.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.06/
[1] Dynamical Systems and Chaos, Springer, New York, 2011
[2] Global invariant manifolds in the transition to preturbulence in the Lorenz system, Indagationes Math., Volume 22 (2011), pp. 222-240
[3] Global Bifurcation Theory and Hilbert's Sixteenth Problem, Kluwer, Boston , 2003
[4] Limit cycles of quadratic systems, Nonlinear Anal., Volume 69 (2008), pp. 2150-2157
[5] A quadratic system with two parallel straight-line-isoclines, Nonlinear Anal., Volume 71 (2009), pp. 5860-5865
[6] On the geometry of polynomial dynamical systems, J. Math. Sci., Volume 157 (2009), pp. 400-412
[7] On limit cycles surrounding a singular point, Differ. Equ. Dyn. Syst., Volume 20 (2012), pp. 329-337
[8] The applied geometry of a general Liénard polynomial system, Appl. Math. Letters, Volume 25 (2012), pp. 2327-2331
[9] Limit cycle bifurcations of a general Liénard system with polynomial restoring and damping functions, Int. J. Dyn. Syst. Differ. Equ., Volume 4 (2012), pp. 242-254
[10] Limit cycle bifurcations of a special Liénard polynomial system, Adv. Dyn. Syst. Appl., Volume 9 (2014), pp. 109-123
[11] Elements of Applied Bifurcation Theory, Springer, New York, 2004
[12] New Methods for Chaotic Dynamics, World Scientific, New Jarsey, 2006
[13] Methods of Qualitative Theory in Nonlinear Dynamics, Part I, World Scientific, New Jarsey, 1998
[14] Methods of Qualitative Theory in Nonlinear Dynamics, Part II, World Scientific, New Jarsey, 2001
[15] Mathematical problems for the next century, Math. Intelligencer, Volume 20 (1998), pp. 7-15
[16] The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Springer, New York, 1982
Cité par Sources :