Global Bifurcation Analysis of the Lorenz System
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 6, p. 429-434.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We carry out the global bifurcation analysis of the classical Lorenz system. For many years, this system has been the subject of study by numerous authors. However, until now the structure of the Lorenz attractor is not clear completely yet, and the most important question at present is to understand the bifurcation scenario of chaos transition in this system. Using some numerical results and our bifurcational geometric approach, we present a new scenario of chaos transition in the Lorenz system.
DOI : 10.22436/jnsa.007.06.06
Classification : 34C28, 37D45, 37G35
Keywords: Lorenz system, bifurcation, singular point, limit cycle, chaos.

Gaiko, Valery A. 1

1 United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganov Str. 6, Minsk 220012, Belarus
@article{JNSA_2014_7_6_a5,
     author = {Gaiko, Valery A.},
     title = {Global {Bifurcation} {Analysis} of the {Lorenz} {System}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {429-434},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {2014},
     doi = {10.22436/jnsa.007.06.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.06/}
}
TY  - JOUR
AU  - Gaiko, Valery A.
TI  - Global Bifurcation Analysis of the Lorenz System
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 429
EP  - 434
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.06/
DO  - 10.22436/jnsa.007.06.06
LA  - en
ID  - JNSA_2014_7_6_a5
ER  - 
%0 Journal Article
%A Gaiko, Valery A.
%T Global Bifurcation Analysis of the Lorenz System
%J Journal of nonlinear sciences and its applications
%D 2014
%P 429-434
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.06/
%R 10.22436/jnsa.007.06.06
%G en
%F JNSA_2014_7_6_a5
Gaiko, Valery A. Global Bifurcation Analysis of the Lorenz System. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 6, p. 429-434. doi : 10.22436/jnsa.007.06.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.06/

[1] Broer, H. W.; Takens, F. Dynamical Systems and Chaos, Springer, New York, 2011

[2] Doedel, E. J.; Krauskopf, B.; Osinga, H. M. Global invariant manifolds in the transition to preturbulence in the Lorenz system, Indagationes Math., Volume 22 (2011), pp. 222-240

[3] Gaiko, V. A. Global Bifurcation Theory and Hilbert's Sixteenth Problem, Kluwer, Boston , 2003

[4] Gaiko, V. A. Limit cycles of quadratic systems, Nonlinear Anal., Volume 69 (2008), pp. 2150-2157

[5] Gaiko, V. A. A quadratic system with two parallel straight-line-isoclines, Nonlinear Anal., Volume 71 (2009), pp. 5860-5865

[6] Gaiko, V. A. On the geometry of polynomial dynamical systems, J. Math. Sci., Volume 157 (2009), pp. 400-412

[7] Gaiko, V. A. On limit cycles surrounding a singular point, Differ. Equ. Dyn. Syst., Volume 20 (2012), pp. 329-337

[8] Gaiko, V. A. The applied geometry of a general Liénard polynomial system, Appl. Math. Letters, Volume 25 (2012), pp. 2327-2331

[9] Gaiko, V. A. Limit cycle bifurcations of a general Liénard system with polynomial restoring and damping functions, Int. J. Dyn. Syst. Differ. Equ., Volume 4 (2012), pp. 242-254

[10] Gaiko, V. A. Limit cycle bifurcations of a special Liénard polynomial system, Adv. Dyn. Syst. Appl., Volume 9 (2014), pp. 109-123

[11] Kuznetsov, Y. A. Elements of Applied Bifurcation Theory, Springer, New York, 2004

[12] Magnitskii, N. A.; S. V. Sidorov New Methods for Chaotic Dynamics, World Scientific, New Jarsey, 2006

[13] Shilnikov, L. P.; Shilnikov, A. L.; Turaev, D. V.; Chua, L. O. Methods of Qualitative Theory in Nonlinear Dynamics, Part I, World Scientific, New Jarsey, 1998

[14] Shilnikov, L. P.; Shilnikov, A. L.; Turaev, D. V.; Chua, L. O. Methods of Qualitative Theory in Nonlinear Dynamics, Part II, World Scientific, New Jarsey, 2001

[15] Smale, S. Mathematical problems for the next century, Math. Intelligencer, Volume 20 (1998), pp. 7-15

[16] Sparrou, C. The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Springer, New York, 1982

Cité par Sources :