Multivariate Fuzzy Perturbed Neural Network Operators Approximation
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 6, p. 383-406.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This article studies the determination of the rate of convergence to the unit of each of three newly introduced here multivariate fuzzy perturbed normalized neural network operators of one hidden layer. These are given through the multivariate fuzzy modulus of continuity of the involved multivariate fuzzy number valued function or its high order fuzzy partial derivatives and that appears in the right-hand side of the associated fuzzy multivariate Jackson type inequalities. The multivariate activation function is very general, especially it can derive from any sigmoid or bell-shaped function. The right hand sides of our multivariate fuzzy convergence inequalities do not depend on the activation function. The sample multivariate fuzzy functionals are of Stancu, Kantorovich and Quadrature types. We give applications for the first fuzzy partial derivatives of the involved function.
DOI : 10.22436/jnsa.007.06.03
Classification : 26E50, 41A17, 41A25, 41A36, 47S40
Keywords: Multivariate neural network fuzzy approximation, fuzzy partial derivative, multivariate fuzzy modulus of continuity, multivariate fuzzy operator.

Anastassiou, George A. 1

1 Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, U.S.A
@article{JNSA_2014_7_6_a2,
     author = {Anastassiou, George A.},
     title = {Multivariate {Fuzzy} {Perturbed} {Neural} {Network} {Operators} {Approximation}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {383-406},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {2014},
     doi = {10.22436/jnsa.007.06.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.03/}
}
TY  - JOUR
AU  - Anastassiou, George A.
TI  - Multivariate Fuzzy Perturbed Neural Network Operators Approximation
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 383
EP  - 406
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.03/
DO  - 10.22436/jnsa.007.06.03
LA  - en
ID  - JNSA_2014_7_6_a2
ER  - 
%0 Journal Article
%A Anastassiou, George A.
%T Multivariate Fuzzy Perturbed Neural Network Operators Approximation
%J Journal of nonlinear sciences and its applications
%D 2014
%P 383-406
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.03/
%R 10.22436/jnsa.007.06.03
%G en
%F JNSA_2014_7_6_a2
Anastassiou, George A. Multivariate Fuzzy Perturbed Neural Network Operators Approximation. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 6, p. 383-406. doi : 10.22436/jnsa.007.06.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.03/

[1] Anastassiou, G. A. Rate of convergence of some neural network operators to the unit-univariate case, J. Math. Anal. Appli., Volume 212 (1997), pp. 237-262

[2] Anastassiou, G. A. Rate of convergence of some multivariate neural network operators to the unit, J. Comp. Math. Appl., Volume 40 (2000), pp. 1-19

[3] Anastassiou, G. A. Quantitative Approximations, Chapman&Hall/CRC, Boca Raton, New York, 2001

[4] Anastassiou, G. A. Fuzzy Approximation by Fuzzy Convolution type Operators, Computers and Mathematics, Volume 48 (2004), pp. 1369-1386

[5] Anastassiou, G. A. Higher order Fuzzy Korovkin Theory via inequalities, Commun. Appl. Anal., Volume 10 (2006), pp. 359-392

[6] Anastassiou, G. A. Fuzzy Korovkin Theorems and Inequalities, J. Fuzzy Math., Volume 15 (2007), pp. 169-205

[7] G. A. Anastassiou Fuzzy Mathematics: Approximation Theory, Springer, Heidelberg, New York, 2010

[8] G. A. Anastassiou Higher order multivariate fuzzy approximation by multivariate fuzzy wavelet type and neural network operators, J. Fuzzy Math., Volume 19 (2011), pp. 601-618

[9] Anastassiou, G. A. Rate of convergence of some neural network operators to the unit-univariate case, revisited, Vesnik, Volume 65 (2013), pp. 511-518

[10] Anastassiou, G. A. Rate of convergence of some multivariate neural network operators to the unit , revisited, J. Comput. Anal. and Appl., Volume 15 (2013), pp. 1300-1309

[11] Anastassiou, G. A. Fuzzy fractional approximations by fuzzy normalized bell and squashing type neural network operators, J. Fuzzy Math., Volume 22 (2014), pp. 139-156

[12] Anastassiou, G. A. Higher Order Multivariate Fuzzy Approximation by basic Neural Network Operators, Cubo, accepted, 2013

[13] G. A. Anastassiou Approximation by Perturbed Neural Network Operators, , submitted, 2014

[14] Anastassiou, G. A. Approximations by Multivariate Perturbed Neural Network Operators, , submitted, 2014

[15] Cardaliaguet, P.; Euvrard, G. Approximation of a function and its derivative with a neural network, Neural Networks, Volume 5 (1992), pp. 207-220

[16] Gal, S. Approximation Theory in Fuzzy Setting, Chapter 13 in Handbook of Analytic-Computational Methods in Applied Mathematics, 617-666, edited by G. Anastassiou, Chapman & Hall/CRC, Boca Raton, New York, 2000

[17] Goetschel, R. J.; Voxman, W. Elementary fuzzy calculus, Fuzzy Sets and Systems, Volume 18 (1986), pp. 31-43

[18] Kaleva, O. Fuzzy differential equations, Fuzzy Sets and Systems, Volume 24 (1987), pp. 301-317

[19] Kim, Y. K.; B. M. Ghil Integrals of fuzzy-number-valeud functions, Fuzzy Sets and Systems, Volume 86 (1997), pp. 213-222

[20] Stancu, D. D. On a generalization of the Bernstein polynomials, Studia Universitatis Babeş-Bolyai, Series Mathematica-Physica, Volume 14 (1969), pp. 31-45

[21] Congxin, C. Wu; Gong, Z. On Henstock integrals of interval-valued functions and fuzzy-valued functions, Fuzzy Sets and Systems, Volume 115 (2000), pp. 377-391

[22] Wu, C.; Gong, Z. On Henstock integral of fuzzy number valued functions (I), Fuzzy Sets and Systems, Volume 120 (2001), pp. 523-532

[23] Wu, C.; Ma, M. On embedding problem of fuzzy number spaces: Part 1, Fuzzy Sets and Systems, Volume 44 (1991), pp. 33-38

Cité par Sources :