Voir la notice de l'article provenant de la source International Scientific Research Publications
Bekker, Miron B. 1 ; Bohner, Martin J. 2 ; Voulov, Hristo D. 3
@article{JNSA_2014_7_6_a1, author = {Bekker, Miron B. and Bohner, Martin J. and Voulov, Hristo D.}, title = {Asymptotic behavior of solutions of a rational system of difference equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {379-382}, publisher = {mathdoc}, volume = {7}, number = {6}, year = {2014}, doi = {10.22436/jnsa.007.06.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.02/} }
TY - JOUR AU - Bekker, Miron B. AU - Bohner, Martin J. AU - Voulov, Hristo D. TI - Asymptotic behavior of solutions of a rational system of difference equations JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 379 EP - 382 VL - 7 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.02/ DO - 10.22436/jnsa.007.06.02 LA - en ID - JNSA_2014_7_6_a1 ER -
%0 Journal Article %A Bekker, Miron B. %A Bohner, Martin J. %A Voulov, Hristo D. %T Asymptotic behavior of solutions of a rational system of difference equations %J Journal of nonlinear sciences and its applications %D 2014 %P 379-382 %V 7 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.02/ %R 10.22436/jnsa.007.06.02 %G en %F JNSA_2014_7_6_a1
Bekker, Miron B.; Bohner, Martin J.; Voulov, Hristo D. Asymptotic behavior of solutions of a rational system of difference equations. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 6, p. 379-382. doi : 10.22436/jnsa.007.06.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.02/
[1] When does local asymptotic stability imply global attractivity in rational equations?, J. Difference Equ. Appl., Volume 12 (2006), pp. 863-885
[2] Dynamics of third-order rational difference equations with open problems and conjectures, Advances in Discrete Mathematics and Applications, 5. Chapman & Hall CRC, Boca Raton, FL, 2008
[3] Rational systems in the plane, J. Difference Equ. Appl., Volume 15 (2009), pp. 303-323
[4] Global results on rational systems in the plane, part 1, J. Difference Equ. Appl., Volume 16 (2010), pp. 975-1013
[5] On the global character of solutions of the system: \(x_{n+1} = \frac{\alpha_1+y_n}{ x_n}\) and \(y_{n+1} = \frac{\alpha_2+\beta_2x_n+\gamma_2y_n}{ A_2+B_2x_n+C_2y_n}\), J. Difference Equ. Appl., Volume 18 (2012), pp. 1205-1252
Cité par Sources :