On the General Solution of a Quadratic Functional Equation and its Ulam Stability in Various Abstract Spaces
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 6, p. 368-378.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we establish the general solution of a new quadratic functional equation $f ( x -\frac{ y+z}{ 2} ) + f ( x + \frac{y-z}{ 2}) +f(x+z) = 3f(x)+ \frac{1}{ 2}f(y)+ \frac{3}{ 2}f(z)$. Next, the Ulam stability of this equation in a real normed space and a non-Archimedean space is studied, respectively.
DOI : 10.22436/jnsa.007.06.01
Classification : 39A30, 97I70
Keywords: General solution, Ulam stability, Quadratic functional equation, Normed space, Non-Archimedean space.

Shen, Yonghong 1 ; Lan, Yaoyao 2

1 School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001, P. R. China
2 Department of Mathematics and Finance, Chongqing University of Arts and Sciences, Yongchuan 402160, P. R. China
@article{JNSA_2014_7_6_a0,
     author = {Shen, Yonghong and Lan, Yaoyao},
     title = {On the {General} {Solution} of a {Quadratic} {Functional} {Equation} and its {Ulam} {Stability} in {Various} {Abstract} {Spaces}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {368-378},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {2014},
     doi = {10.22436/jnsa.007.06.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.01/}
}
TY  - JOUR
AU  - Shen, Yonghong
AU  - Lan, Yaoyao
TI  - On the General Solution of a Quadratic Functional Equation and its Ulam Stability in Various Abstract Spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 368
EP  - 378
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.01/
DO  - 10.22436/jnsa.007.06.01
LA  - en
ID  - JNSA_2014_7_6_a0
ER  - 
%0 Journal Article
%A Shen, Yonghong
%A Lan, Yaoyao
%T On the General Solution of a Quadratic Functional Equation and its Ulam Stability in Various Abstract Spaces
%J Journal of nonlinear sciences and its applications
%D 2014
%P 368-378
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.01/
%R 10.22436/jnsa.007.06.01
%G en
%F JNSA_2014_7_6_a0
Shen, Yonghong; Lan, Yaoyao. On the General Solution of a Quadratic Functional Equation and its Ulam Stability in Various Abstract Spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 6, p. 368-378. doi : 10.22436/jnsa.007.06.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.06.01/

[1] T. Aoki On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[2] Cholewa, P. W. Remarks on the stability of functional equations, Aequationes Math., Volume 27 (1984), pp. 76-86

[3] S. Czerwik On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, Volume 62 (1992), pp. 59-64

[4] Czerwik, S. Functional Equations and Inequalities in Several Variables, World Scientific, , 2002

[5] Czerwik, S.; K. D Lutek Stability of the quadratic functional equation in Lipschitz spaces, J. Math. Anal. Appl., Volume 293 (2004), pp. 79-88

[6] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436

[7] Hyers, D. H. On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, Volume 27 (1941), pp. 222-224

[8] Jun, K. W.; H. M. Kim On the stability of Appolonius' equation, Bull. Belg. Math. Soc., Volume 11 (2004), pp. 615-624

[9] Jung, S. M. On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., Volume 222 (1998), pp. 126-137

[10] Jung, S. M. On the Hyers-Ulam-Rassias stability of a quadratic functional equation , J. Math. Anal. Appl., Volume 232 (1999), pp. 384-393

[11] S. M. Jung Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg, Volume 70 (2000), pp. 175-190

[12] Jung, S. M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, , 2011

[13] Kenary, H. A.; Park, C.; Rezaei, H.; Jang, S. Y. Stability of a generalized quadratic functional equation in various spaces: A fixed point alternative approach, Adv. Differ. Equ., Volume 2011 (2011), pp. 1-62

[14] Kenary, H. A.; Cho, Y. J. Stability of mixed additive-quadratic Jensen type functional equation in various spaces, Comput. Math. Appl., Volume 61 (2011), pp. 2704-2724

[15] Kim, H. M.; Jun, K. W.; Son, E. Generalized Hyers-Ulam stability of quadratic functional inequality, Abstr. Appl. Anal., Article ID 564923, Volume 2013 (2013), pp. 1-8

[16] Lee, Y. S.; Chung, S. Y. Stability of a quadratic Jensen type functional equation in the spaces of generalized functions, J. Math. Anal. Appl., Volume 324 (2006), pp. 1395-1406

[17] Lee, Y. W. On the stability of a quadratic Jensen type functional equation, J. Math. Anal. Appl., Volume 270 (2002), pp. 590-601

[18] Moslehian, M. S.; Rassias, Th. M. Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discr. Math., Volume 1 (2007), pp. 325-334

[19] Park, C.; Kenary, H. A.; Rassias, Th. M. Hyers-Ulam-Rassias stability of the additive-quadratic mappings in non- Archimedean Banach spaces, J. Inequal. Appl., Volume 2012 (2012), pp. 1-174

[20] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[21] Sahoo, P. K.; Kannappan, P. Introduction to Functional Equations, CRC Press, Boca Raton, 2011

[22] Ulam, S. M. Problems in Modern Mathematics, Wiley, New York, 1960

[23] Yang, D. The stability of the equadratic functional equation on amenable groups, J. Math. Anal. Appl., Volume 291 (2004), pp. 666-672

Cité par Sources :