Voir la notice de l'article provenant de la source International Scientific Research Publications
$f ( x -\frac{ y + z}{ 2}) \oplus f (x +\frac{ y - z}{ 2})\oplus f(x + z) = 3f(x) \oplus \frac{1}{ 2} f(y) \oplus \frac{3 }{2 }f(z).$ |
Wang, Faxing 1 ; Shen, Yonghong 2
@article{JNSA_2014_7_5_a5, author = {Wang, Faxing and Shen, Yonghong}, title = {On the {Ulam} stability of a quadratic set-valued functional equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {359-367}, publisher = {mathdoc}, volume = {7}, number = {5}, year = {2014}, doi = {10.22436/jnsa.007.05.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.06/} }
TY - JOUR AU - Wang, Faxing AU - Shen, Yonghong TI - On the Ulam stability of a quadratic set-valued functional equation JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 359 EP - 367 VL - 7 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.06/ DO - 10.22436/jnsa.007.05.06 LA - en ID - JNSA_2014_7_5_a5 ER -
%0 Journal Article %A Wang, Faxing %A Shen, Yonghong %T On the Ulam stability of a quadratic set-valued functional equation %J Journal of nonlinear sciences and its applications %D 2014 %P 359-367 %V 7 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.06/ %R 10.22436/jnsa.007.05.06 %G en %F JNSA_2014_7_5_a5
Wang, Faxing; Shen, Yonghong. On the Ulam stability of a quadratic set-valued functional equation. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 359-367. doi : 10.22436/jnsa.007.05.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.06/
[1] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66
[2] Convex analysis and measurable multifunctions, in: Lec. Notes in Math., vol. 580, Springer, Berlin, 1977
[3] On the stability of the generalized cubic set-valued functional equation, Appl. Math. Lett., Volume 37 (2014), pp. 7-14
[4] A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309
[5] Hyers-Ulam stability of functional equations in several variables, Aequat. Math., Volume 50 (1995), pp. 143-190
[6] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436
[7] On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, Volume 27 (1941), pp. 222-224
[8] Hyers-Ulam stability of a generalized additive set-valued functional equation, J. Inequal. Appl., Volume 2013 (2013), pp. 1-101
[9] Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, , 2011
[10] On the stability of set-valued functional equations with the fixed point alternative, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-81
[11] Hyers-Ulam stability of additive set-valued functional equations , Appl. Math. Lett., Volume 24 (2011), pp. 1312-1316
[12] Stability of some set-valued functional equations, Appl. Math. Lett., Volume 24 (2011), pp. 1910-1914
[13] The properties of functional inclusions and Hyers-Ulam stability, Aequat. Math., Volume 85 (2013), pp. 111-118
[14] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[15] On the stability of functional equations and a problem of Ulam, Acta Appl. Math., Volume 62 (2000), pp. 23-130
[16] An embedding theorem for spaces of convex sets , Proc. Amer. Math. Soc., Volume 3 (1952), pp. 165-169
[17] Introduction to Functional Equations, CRC Press , Boca Raton, 2011
[18] On the general solution of a quadratic functional equation and its Ulam stability in various abstract spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 368-378
[19] Problems in Modern Mathematics, Wiley, New York, 1960
Cité par Sources :