Voir la notice de l'article provenant de la source International Scientific Research Publications
Batra, Rakesh 1 ; Vashistha, Sachin 2 ; Kumar, Rajesh 3
@article{JNSA_2014_7_5_a4, author = {Batra, Rakesh and Vashistha, Sachin and Kumar, Rajesh}, title = {Coupled coincidence point theorems for mappings without mixed monotone property under c-distance in cone metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {345-358}, publisher = {mathdoc}, volume = {7}, number = {5}, year = {2014}, doi = {10.22436/jnsa.007.05.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.05/} }
TY - JOUR AU - Batra, Rakesh AU - Vashistha, Sachin AU - Kumar, Rajesh TI - Coupled coincidence point theorems for mappings without mixed monotone property under c-distance in cone metric spaces JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 345 EP - 358 VL - 7 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.05/ DO - 10.22436/jnsa.007.05.05 LA - en ID - JNSA_2014_7_5_a4 ER -
%0 Journal Article %A Batra, Rakesh %A Vashistha, Sachin %A Kumar, Rajesh %T Coupled coincidence point theorems for mappings without mixed monotone property under c-distance in cone metric spaces %J Journal of nonlinear sciences and its applications %D 2014 %P 345-358 %V 7 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.05/ %R 10.22436/jnsa.007.05.05 %G en %F JNSA_2014_7_5_a4
Batra, Rakesh; Vashistha, Sachin; Kumar, Rajesh. Coupled coincidence point theorems for mappings without mixed monotone property under c-distance in cone metric spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 345-358. doi : 10.22436/jnsa.007.05.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.05/
[1] Coupled coincidence point theorems for nonlinear contractions under c-distance in cone metric spaces, Ann. Funct. Anal., Volume 4 (2013), pp. 138-148
[2] Coupled coincidence point theorems for nonlinear contractions under (F; g)-invariant set in cone metric spaces, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 86-96
[3] Some coupled coincidence point results under c-distance in cone metric spaces, Eng. Math. Lett., Volume 2 (2013), pp. 90-114
[4] Fixed point theorems in partially ordered metric spaces and applications , Nonlinear Anal., Volume 65 (2006), pp. 1379-1393
[5] Common fixed point theorems on generalized distance in ordered cone metric spaces, Comput. Math. Appl. , Volume 61 (2011), pp. 1254-1260
[6] Coupled fixed point theorems under weak contractions , Discrete Dyn. Nat. Soc. Article ID 184534 (2012), pp. 1-9
[7] Cone meric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. , Volume 332 (2007), pp. 1468-1476
[8] On Banach contraction principle in a cone metric space , J.Nonliear Sci. Appl., Volume 5 (2012), pp. 252-258
[9] Nonconvex minimization theorems and fixed point theorems in complete metric spaces , Math. Japon., Volume 44 (1996), pp. 381-391
[10] Couple fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl., Volume 59 (2010), pp. 3656-3668
[11] Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., Volume 70 (2009), pp. 4341-4349
[12] Coupled coincidence points for compatible mappings satisfying mixed monotone property, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 104-114
[13] Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser. ), Volume 23 (2007), pp. 2205-2212
[14] A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1435-1443
[15] Coupled fixed point theorems in d-complete topological spaces, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 186-194
[16] Coupled fixed point, F-invariant set and fixed point of N-order , Ann. Funct. Anal., Volume 1 (2010), pp. 46-56
[17] Coupled coincidence points in partially ordered cone metric spaces with a c-distance, J. Appl. Math, Article ID 312078 (2012), pp. 1-15
[18] Coupled fixed point theorems for weak contraction mappings under F-invariant set, Abstr. Appl. Anal. , pp. 1-15
[19] Cone metric spaces and fixed point theorems in diametrically contractive mappings, Acta Math. Sin. (Engl. Ser. ), Volume 26 (2010), pp. 489-496
Cité par Sources :