Coupled coincidence point theorems for mappings without mixed monotone property under c-distance in cone metric spaces
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 345-358.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Fixed point theory in the field of partially ordered metric spaces has been an area of attraction since the appearance of Ran and Reurings theorem and Nieto and Rodríguez-López theorem. One of the most significant hypotheses of these theorems was the mixed monotone property which has been avoided and replaced by the notion of invariant set in recent years and many statements have been proved using the concept of invariant set. In this paper we show that the invariant condition guides us to prove many similar results to which we were exposed to using the mixed monotone property. We present some examples in support of applicability of our results.
DOI : 10.22436/jnsa.007.05.05
Classification : 47H10, 54H25, 55M20
Keywords: fixed point, coincidence point, cone metric space, c-distance, (F, g)-invariant set.

Batra, Rakesh 1 ; Vashistha, Sachin 2 ; Kumar, Rajesh 3

1 Department of Mathematics, Hans Raj College, University of Delhi, Delhi-110007, India
2 Department of Mathematics, Hindu College, University of Delhi, Delhi-110007, India
3 Department of Mathematics,Hindu College, University of Delhi, Delhi-110007, India
@article{JNSA_2014_7_5_a4,
     author = {Batra, Rakesh and Vashistha, Sachin and Kumar, Rajesh},
     title = {Coupled coincidence point theorems for mappings without mixed monotone property under c-distance in cone metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {345-358},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {2014},
     doi = {10.22436/jnsa.007.05.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.05/}
}
TY  - JOUR
AU  - Batra, Rakesh
AU  - Vashistha, Sachin
AU  - Kumar, Rajesh
TI  - Coupled coincidence point theorems for mappings without mixed monotone property under c-distance in cone metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 345
EP  - 358
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.05/
DO  - 10.22436/jnsa.007.05.05
LA  - en
ID  - JNSA_2014_7_5_a4
ER  - 
%0 Journal Article
%A Batra, Rakesh
%A Vashistha, Sachin
%A Kumar, Rajesh
%T Coupled coincidence point theorems for mappings without mixed monotone property under c-distance in cone metric spaces
%J Journal of nonlinear sciences and its applications
%D 2014
%P 345-358
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.05/
%R 10.22436/jnsa.007.05.05
%G en
%F JNSA_2014_7_5_a4
Batra, Rakesh; Vashistha, Sachin; Kumar, Rajesh. Coupled coincidence point theorems for mappings without mixed monotone property under c-distance in cone metric spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 345-358. doi : 10.22436/jnsa.007.05.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.05/

[1] Batra, R.; Vashistha, S. Coupled coincidence point theorems for nonlinear contractions under c-distance in cone metric spaces, Ann. Funct. Anal., Volume 4 (2013), pp. 138-148

[2] Batra, R.; S. Vashistha Coupled coincidence point theorems for nonlinear contractions under (F; g)-invariant set in cone metric spaces, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 86-96

[3] Batra, R.; S. Vashistha Some coupled coincidence point results under c-distance in cone metric spaces, Eng. Math. Lett., Volume 2 (2013), pp. 90-114

[4] Bhaskar, T. G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications , Nonlinear Anal., Volume 65 (2006), pp. 1379-1393

[5] Cho, Y. J.; Saadati, R.; Wang, S. Common fixed point theorems on generalized distance in ordered cone metric spaces, Comput. Math. Appl. , Volume 61 (2011), pp. 1254-1260

[6] Cho, Y. J.; Kadelburg, Z.; Saadati, R.; W. Shatanawi Coupled fixed point theorems under weak contractions , Discrete Dyn. Nat. Soc. Article ID 184534 (2012), pp. 1-9

[7] Huang, L. G.; X. Zhang Cone meric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. , Volume 332 (2007), pp. 1468-1476

[8] Jain, Sh.; Jain, Sh.; L. B. Jain On Banach contraction principle in a cone metric space , J.Nonliear Sci. Appl., Volume 5 (2012), pp. 252-258

[9] Kada, O.; Suzuki, T.; W. Takahashi Nonconvex minimization theorems and fixed point theorems in complete metric spaces , Math. Japon., Volume 44 (1996), pp. 381-391

[10] Karapinar, E. Couple fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl., Volume 59 (2010), pp. 3656-3668

[11] Lakshmikantham, V.; Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., Volume 70 (2009), pp. 4341-4349

[12] Nashine, H. K.; Samet, B.; C. Vetro Coupled coincidence points for compatible mappings satisfying mixed monotone property, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 104-114

[13] Nieto, J. J.; R. Rodríguez-López Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser. ), Volume 23 (2007), pp. 2205-2212

[14] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1435-1443

[15] Rao, K. P. R.; Bindu, S. Hima; Md. Mustaq Ali Coupled fixed point theorems in d-complete topological spaces, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 186-194

[16] Samet, B.; C. Vetro Coupled fixed point, F-invariant set and fixed point of N-order , Ann. Funct. Anal., Volume 1 (2010), pp. 46-56

[17] Shatanawi, W.; Karapinar, E.; H. Aydi Coupled coincidence points in partially ordered cone metric spaces with a c-distance, J. Appl. Math, Article ID 312078 (2012), pp. 1-15

[18] Sintunavarat, W.; Cho, Y. J.; Kumam, P. Coupled fixed point theorems for weak contraction mappings under F-invariant set, Abstr. Appl. Anal. , pp. 1-15

[19] Turkoglu, D.; M. Abuloha Cone metric spaces and fixed point theorems in diametrically contractive mappings, Acta Math. Sin. (Engl. Ser. ), Volume 26 (2010), pp. 489-496

Cité par Sources :