Visco-resolvent algorithms for monotone operators and nonexpansive mappings
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 325-344.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Two new type of visco-resolvent algorithms for finding a zero of the sum of two monotone operators and a fixed point of a nonexpansive mapping in a Hilbert space are investigated. The algorithms consist of the zeros and the fixed points of the considered problems in which one operator is replaced with its resolvent and a viscosity term is added. Strong convergence of the algorithms are shown. As special cases, we can approach to the minimum norm common element of the zero of the sum of two monotone operators and the fixed point of a nonexpansive mapping without using the metric projection. Some applications are included.
DOI : 10.22436/jnsa.007.05.04
Classification : 49J40, 47J20, 47H09, 65J15
Keywords: Monotone operator, nonexpansive mapping, zero point, fixed point, resolvent.

Li, Peize 1 ; Kang, Shin Min 2 ; Zhu, Li-Jun 3

1 Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China
2 Department of Mathematics and the RINS, Gyeongsang National University, Jinju 660-701, Korea
3 School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750021, China
@article{JNSA_2014_7_5_a3,
     author = {Li, Peize and Kang, Shin Min and Zhu, Li-Jun},
     title = {Visco-resolvent algorithms for monotone operators and nonexpansive mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {325-344},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {2014},
     doi = {10.22436/jnsa.007.05.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.04/}
}
TY  - JOUR
AU  - Li, Peize
AU  - Kang, Shin Min
AU  - Zhu, Li-Jun
TI  - Visco-resolvent algorithms for monotone operators and nonexpansive mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 325
EP  - 344
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.04/
DO  - 10.22436/jnsa.007.05.04
LA  - en
ID  - JNSA_2014_7_5_a3
ER  - 
%0 Journal Article
%A Li, Peize
%A Kang, Shin Min
%A Zhu, Li-Jun
%T Visco-resolvent algorithms for monotone operators and nonexpansive mappings
%J Journal of nonlinear sciences and its applications
%D 2014
%P 325-344
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.04/
%R 10.22436/jnsa.007.05.04
%G en
%F JNSA_2014_7_5_a3
Li, Peize; Kang, Shin Min; Zhu, Li-Jun. Visco-resolvent algorithms for monotone operators and nonexpansive mappings. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 325-344. doi : 10.22436/jnsa.007.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.04/

[1] Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M. On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 471-489

[2] Bauschke, H. H.; Borwein, J. M. On projection algorithms for solving convex feasibility problems, SIAM Review, Volume 38 (1996), pp. 367-426

[3] Bauschke, H. H.; Combettes, P. L. A Dykstra-like algorithm for two monotone operators, Pacific J. Optim., Volume 4 (2008), pp. 383-391

[4] Bauschke, H. H.; Combettes, P. L.; S. Reich The asymptotic behavior of the composition of two resolvents , Nonlinear Anal., Volume 60 (2005), pp. 283-301

[5] Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems, Math. Stud., Volume 63 (1994), pp. 123-145

[6] Censor, Y.; Zenios, S. A. Parallel Optimization: Theory, Algorithms, and Applications, Oxford University Press, New York, USA , 1997

[7] Combettes, P. L. Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, Volume 53 (2004), pp. 475-504

[8] Combettes, P. L.; S. A. Hirstoaga Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136

[9] Combettes, P. L.; S. A. Hirstoaga Approximating curves for nonexpansive and monotone operators, J. Convex Anal., Volume 13 (2006), pp. 633-646

[10] Combettes, P. L.; Hirstoaga, S. A. Visco-penalization of the sum of two monotone operators, Nonlinear Anal., Volume 69 (2008), pp. 579-591

[11] Ding, F.; T. Chen Iterative least squares solutions of coupled Sylvester matrix equations, Systems Control Lett., Volume 54 (2005), pp. 95-107

[12] Eckstein, J.; Bertsekas, D. P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming, Volume 55 (1992), pp. 293-318

[13] Fang, Y. P.; Huang, N. J. H-Monotone operator resolvent operator technique for quasi-variational inclusions, Appl. Math. Comput., Volume 145 (2003), pp. 795-803

[14] Geobel, K.; Kirk, W. A. Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, 1990

[15] Lin, L. J. Variational inclusions problems with applications to Ekeland's variational principle, fixed point and optimization problems , J. Global Optim., Volume 39 (2007), pp. 509-527

[16] Lions, P.-L.; Mercier, B. Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., Volume 16 (1979), pp. 964-979

[17] Liu, X.; Cui, Y. Common minimal-norm fixed point of a finite family of nonexpansive mappings, Nonlinear Anal., Volume 73 (2010), pp. 76-83

[18] Lu, X.; Xu, H. K.; X. Yin Hybrid methods for a class of monotone variational inequalities, Nonlinear Anal., Volume 71 (2009), pp. 1032-1041

[19] Moudafi, A. On the regularization of the sum of two maximal monotone operators, Nonlinear Anal., Volume 42 (2009), pp. 1203-1208

[20] Passty, G. B. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., Volume 72 (1979), pp. 383-390

[21] Peng, J. W.; Wang, Y.; Shyu, D. S.; Yao, J. C. Common solutions of an iterative scheme for variational inclusions, equilibrium problems and fixed point problems, J. Inequal. Appl., Article ID 720371, Volume 2008 (2008), pp. 1-15

[22] Robinson, S. M. Generalized equation and their solutions, part I, basic theory, Math Program. Study, Volume 10 (1979), pp. 128-141

[23] Rockafellar, R. T. On the maximal monotonicity of subdifferential mappings, Pacific J. Math., Volume 33 (1970), pp. 209-216

[24] R. T. Rockafellar Monotone operators and the proximal point algorithm, SIAM J. Control Optim., Volume 14 (1976), pp. 877-898

[25] Sabharwal, A.; Potter, L. C. Convexly constrained linear inverse problems: iterative least-squares and regularization, IEEE Trans. Signal Process, Volume 46 (1998), pp. 2345-2352

[26] Suzuki, T. Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 2005 (2005), pp. 103-123

[27] Takahashi, S.; Takahashi, W.; Toyoda, M. Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., Volume 147 (2010), pp. 27-41

[28] Takahashi, W.; M. Toyoda Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428

[29] Xu, H. K. Iterative algorithms for nonlinear operators , J. London Math. Soc., Volume 2 (2002), pp. 1-17

[30] Yao, Y.; Chen, R.; H. K. Xu Schemes for finding minimum-norm solutions of variational inequalities, Nonlinear Anal., Volume 72 (2010), pp. 3447-3456

[31] Yao, Y.; Y. C. Liou Composite algorithms for minimization over the solutions of equilibrium problems and fixed point problems , Abstr. Appl. Anal., Article ID 763506, Volume 2010 (2010), pp. 1-19

[32] Zhang, S. S.; Joseph, H. W. Lee; Chan, C. K. Algorithms of common solutions for quasi variational inclusion and fixed point problems , Appl. Math. Mech. (English Ed.), Volume 29 (2008), pp. 571-581

Cité par Sources :