Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Peize 1 ; Kang, Shin Min 2 ; Zhu, Li-Jun 3
@article{JNSA_2014_7_5_a3, author = {Li, Peize and Kang, Shin Min and Zhu, Li-Jun}, title = {Visco-resolvent algorithms for monotone operators and nonexpansive mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {325-344}, publisher = {mathdoc}, volume = {7}, number = {5}, year = {2014}, doi = {10.22436/jnsa.007.05.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.04/} }
TY - JOUR AU - Li, Peize AU - Kang, Shin Min AU - Zhu, Li-Jun TI - Visco-resolvent algorithms for monotone operators and nonexpansive mappings JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 325 EP - 344 VL - 7 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.04/ DO - 10.22436/jnsa.007.05.04 LA - en ID - JNSA_2014_7_5_a3 ER -
%0 Journal Article %A Li, Peize %A Kang, Shin Min %A Zhu, Li-Jun %T Visco-resolvent algorithms for monotone operators and nonexpansive mappings %J Journal of nonlinear sciences and its applications %D 2014 %P 325-344 %V 7 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.04/ %R 10.22436/jnsa.007.05.04 %G en %F JNSA_2014_7_5_a3
Li, Peize; Kang, Shin Min; Zhu, Li-Jun. Visco-resolvent algorithms for monotone operators and nonexpansive mappings. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 325-344. doi : 10.22436/jnsa.007.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.04/
[1] On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 471-489
[2] On projection algorithms for solving convex feasibility problems, SIAM Review, Volume 38 (1996), pp. 367-426
[3] A Dykstra-like algorithm for two monotone operators, Pacific J. Optim., Volume 4 (2008), pp. 383-391
[4] The asymptotic behavior of the composition of two resolvents , Nonlinear Anal., Volume 60 (2005), pp. 283-301
[5] From optimization and variational inequalities to equilibrium problems, Math. Stud., Volume 63 (1994), pp. 123-145
[6] Parallel Optimization: Theory, Algorithms, and Applications, Oxford University Press, New York, USA , 1997
[7] Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, Volume 53 (2004), pp. 475-504
[8] Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136
[9] Approximating curves for nonexpansive and monotone operators, J. Convex Anal., Volume 13 (2006), pp. 633-646
[10] Visco-penalization of the sum of two monotone operators, Nonlinear Anal., Volume 69 (2008), pp. 579-591
[11] Iterative least squares solutions of coupled Sylvester matrix equations, Systems Control Lett., Volume 54 (2005), pp. 95-107
[12] On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming, Volume 55 (1992), pp. 293-318
[13] H-Monotone operator resolvent operator technique for quasi-variational inclusions, Appl. Math. Comput., Volume 145 (2003), pp. 795-803
[14] Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, 1990
[15] Variational inclusions problems with applications to Ekeland's variational principle, fixed point and optimization problems , J. Global Optim., Volume 39 (2007), pp. 509-527
[16] Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., Volume 16 (1979), pp. 964-979
[17] Common minimal-norm fixed point of a finite family of nonexpansive mappings, Nonlinear Anal., Volume 73 (2010), pp. 76-83
[18] Hybrid methods for a class of monotone variational inequalities, Nonlinear Anal., Volume 71 (2009), pp. 1032-1041
[19] On the regularization of the sum of two maximal monotone operators, Nonlinear Anal., Volume 42 (2009), pp. 1203-1208
[20] Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., Volume 72 (1979), pp. 383-390
[21] Common solutions of an iterative scheme for variational inclusions, equilibrium problems and fixed point problems, J. Inequal. Appl., Article ID 720371, Volume 2008 (2008), pp. 1-15
[22] Generalized equation and their solutions, part I, basic theory, Math Program. Study, Volume 10 (1979), pp. 128-141
[23] On the maximal monotonicity of subdifferential mappings, Pacific J. Math., Volume 33 (1970), pp. 209-216
[24] Monotone operators and the proximal point algorithm, SIAM J. Control Optim., Volume 14 (1976), pp. 877-898
[25] Convexly constrained linear inverse problems: iterative least-squares and regularization, IEEE Trans. Signal Process, Volume 46 (1998), pp. 2345-2352
[26] Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 2005 (2005), pp. 103-123
[27] Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., Volume 147 (2010), pp. 27-41
[28] Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428
[29] Iterative algorithms for nonlinear operators , J. London Math. Soc., Volume 2 (2002), pp. 1-17
[30] Schemes for finding minimum-norm solutions of variational inequalities, Nonlinear Anal., Volume 72 (2010), pp. 3447-3456
[31] Composite algorithms for minimization over the solutions of equilibrium problems and fixed point problems , Abstr. Appl. Anal., Article ID 763506, Volume 2010 (2010), pp. 1-19
[32] Algorithms of common solutions for quasi variational inclusion and fixed point problems , Appl. Math. Mech. (English Ed.), Volume 29 (2008), pp. 571-581
Cité par Sources :