Voir la notice de l'article provenant de la source International Scientific Research Publications
Jiang, Yong 1 ; Rüzgar, Hüseyin 2 ; Liu, Wenjun 1 ; Tuna, Adnan 2
@article{JNSA_2014_7_5_a2, author = {Jiang, Yong and R\"uzgar, H\"useyin and Liu, Wenjun and Tuna, Adnan}, title = {Some new generalizations of {Ostrowski} type inequalities on time scales involving combination of \(\triangle\)-integral means}, journal = {Journal of nonlinear sciences and its applications}, pages = {311-324}, publisher = {mathdoc}, volume = {7}, number = {5}, year = {2014}, doi = {10.22436/jnsa.007.05.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.03/} }
TY - JOUR AU - Jiang, Yong AU - Rüzgar, Hüseyin AU - Liu, Wenjun AU - Tuna, Adnan TI - Some new generalizations of Ostrowski type inequalities on time scales involving combination of \(\triangle\)-integral means JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 311 EP - 324 VL - 7 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.03/ DO - 10.22436/jnsa.007.05.03 LA - en ID - JNSA_2014_7_5_a2 ER -
%0 Journal Article %A Jiang, Yong %A Rüzgar, Hüseyin %A Liu, Wenjun %A Tuna, Adnan %T Some new generalizations of Ostrowski type inequalities on time scales involving combination of \(\triangle\)-integral means %J Journal of nonlinear sciences and its applications %D 2014 %P 311-324 %V 7 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.03/ %R 10.22436/jnsa.007.05.03 %G en %F JNSA_2014_7_5_a2
Jiang, Yong; Rüzgar, Hüseyin; Liu, Wenjun; Tuna, Adnan. Some new generalizations of Ostrowski type inequalities on time scales involving combination of \(\triangle\)-integral means. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 311-324. doi : 10.22436/jnsa.007.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.03/
[1] Inequalities on time scales: a survey, Math. Inequal. Appl., Volume 4 (2001), pp. 535-557
[2] On some bounds of Ostrowski and Čebyšev type, J. Math. Inequal., Volume 4 (2010), pp. 53-65
[3] An application of time scales to economics, Math. Comput. Modelling, Volume 43 (2006), pp. 718-726
[4] Periodicity of scalar dynamic equations and applications to population models, J. Math. Anal. Appl., Volume 330 (2007), pp. 1-9
[5] Dynamic equations on time scales, Birkhäuser Boston, Boston, MA, 2001
[6] Advances in dynamic equations on time scales, Birkhäuser Boston, Boston, MA, 2003
[7] The Grüss inequality on time scales, Commun. Math. Anal., (electronic)., Volume 3 (2007), pp. 1-8
[8] Ostrowski inequalities on time scales, JIPAM. J. Inequal. Pure Appl. Math., Volume 9 (2008), pp. 1-8
[9] Diamond-alpha Grüss type inequalities on time scales, Int. J. Dyn. Syst. Differ. Equ., Volume 3 (2011), pp. 234-247
[10] Weighted Ostrowski-Grüss inequalities on time scales, Afr. Diaspora J. Math., Volume 12 (2011), pp. 89-99
[11] A new Ostrowski type inequality involving integral means over end intervals, Tamkang J. Math., Volume 33 (2002), pp. 109-118
[12] Ostrowski type inequalities on time scales, An. Univ. Craiova Ser. Mat. Inform., Volume 34 (2007), pp. 43-58
[13] A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Volume 42(90) (1999), pp. 301-314
[14] A generalization of the Ostrowski integral inequality for mappings whose derivatives belong to \(L_p[a; b]\) and applications in numerical integration, J. Math. Anal. Appl., Volume 255 (2001), pp. 605-626
[15] Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation, Arch. Math. (Basel), Volume 91 (2008), pp. 450-460
[16] Ostrowski's type inequalities for some classes of continuous functions of selfadjoint operators in Hilbert spaces, Comput. Math. Appl., Volume 62 (2011), pp. 4439-4448
[17] Refinements of the Ostrowski inequality in terms of the cumulative variation and applications, Analysis (Berlin), Volume 34 (2014), pp. 223-240
[18] Ein Mabkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Univarsi. Würzburg, 1988
[19] Generalization of Ostrowski and Čebyšev type inequalities involving many functions, Aequationes Math., Volume 85 (2013), pp. 409-419
[20] Generalized double-integral Ostrowski type inequalities on time scales, Appl. Math. Lett., Volume 24 (2011), pp. 1461-1467
[21] Quantum Calculus, Springer-Verlag, New York, 2002
[22] Some delay integral inequalities on time scales , Comput. Math. Appl., Volume 59 (2010), pp. 1929-1936
[23] Some Gronwall type inequalities on time scales, J. Math. Inequal., Volume 4 (2010), pp. 67-76
[24] Dynamic systems on measure chains, Kluwer Acad. Publ., Dordrecht, 1996
[25] Particle simulations of space weather, J. Comput. Phys., Volume 231 (2012), pp. 795-821
[26] An Ostrowski-Grüss type inequality on time scales, Comput. Math. Appl., Volume 58 (2009), pp. 1207-1210
[27] A generalization of Ostrowski inequality on time scales for k points, Appl. Math. Comput., Volume 203 (2008), pp. 754-760
[28] A perturbed Ostrowski-type inequality on time scales for k points for functions whose second derivatives are bounded, J. Inequal. Appl., Art. ID 597241, Volume 2008 (2008), pp. 1-12
[29] A new generalization of Ostrowski type inequality on time scales, An. Ştiinţ. Univ. ''Ovidius'' Constanţa Ser. Mat., Volume 17 (2009), pp. 101-114
[30] Ostrowski type inequalities on time scales for double integrals, Acta Appl. Math., Volume 110 (2010), pp. 477-497
[31] Weighted Ostrowski, Trapezoid and Grüss type inequalities on time scales, J. Math. Inequal., Volume 6 (2012), pp. 381-399
[32] New weighted Ostrowski and Ostrowski-Grüss Type inequalities on time scales, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 60 (2014), pp. 57-76
[33] On weighted Ostrowski type, Trapezoid type, Grüss type and Ostrowski-Grüss like inequalities on time scales, Appl. Anal., Volume 93 (2014), pp. 551-571
[34] A sharp Grüss type inequality on time scales and application to the sharp Ostrowski- Grüss inequality, Commun. Math. Anal., Volume 6 (2009), pp. 33-41
[35] Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert , Comment. Math. Helv., Volume 10 (1937), pp. 226-227
[36] On weighted Čebyšev-Grüss type inequalities on time scales, J. Math. Inequal., Volume 2 (2008), pp. 185-195
[37] New weighted Ostrowski and Čebyšev type inequalities on time scales, Comput. Math. Appl., Volume 60 (2010), pp. 1510-1514
[38] A PIC based procedure for the integration of multiple time scale problems in gas discharge physics, J. Comput. Phys., Volume 228 (2009), pp. 1017-1029
[39] Generalizations of weighted Ostrowski type inequalities for mappings of bounded variation and their applications, Comput. Math. Appl., Volume 55 (2008), pp. 1785-1793
[40] Generalization of Ostrowski and Ostrowski-Grüss type inequalities on time scales, Comput. Math. Appl., Volume 60 (2010), pp. 803-811
[41] Weighted Ostrowski, Ostrowski-Grüss and Ostrowski- Čebyhev Type Inequalities on Time Scales, Publ. Math. Debrecen, Volume 81 (2012), pp. 81-102
Cité par Sources :