Some new generalizations of Ostrowski type inequalities on time scales involving combination of $\triangle$-integral means
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 311-324.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we obtain some new generalizations of Ostrowski type inequalities on time scales involving combination of $\triangle$-integral means, i.e., a new Ostrowski type inequality on time scales involving combination of $\triangle$-integral means, two Ostrowski type inequalities for two functions on time scales, and some new perturbed Ostrowski type inequalities on time scales. We also give some other interesting inequalities as special cases.
DOI : 10.22436/jnsa.007.05.03
Classification : 26D15, 26E70, 58C05, 65D30
Keywords: Ostrowski inequality, perturbed Ostrowski inequality, \(\triangle\)-integral means, time scales.

Jiang, Yong 1 ; Rüzgar, Hüseyin 2 ; Liu, Wenjun 1 ; Tuna, Adnan 2

1 College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
2 Department of Mathematics, Faculty of Science and Arts, University of Nigde, Merkez 51240, Nigde, Turkey
@article{JNSA_2014_7_5_a2,
     author = {Jiang, Yong and R\"uzgar, H\"useyin and Liu, Wenjun and Tuna, Adnan},
     title = {Some new generalizations of {Ostrowski} type inequalities on time scales involving combination of \(\triangle\)-integral means},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {311-324},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {2014},
     doi = {10.22436/jnsa.007.05.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.03/}
}
TY  - JOUR
AU  - Jiang, Yong
AU  - Rüzgar, Hüseyin
AU  - Liu, Wenjun
AU  - Tuna, Adnan
TI  - Some new generalizations of Ostrowski type inequalities on time scales involving combination of \(\triangle\)-integral means
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 311
EP  - 324
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.03/
DO  - 10.22436/jnsa.007.05.03
LA  - en
ID  - JNSA_2014_7_5_a2
ER  - 
%0 Journal Article
%A Jiang, Yong
%A Rüzgar, Hüseyin
%A Liu, Wenjun
%A Tuna, Adnan
%T Some new generalizations of Ostrowski type inequalities on time scales involving combination of \(\triangle\)-integral means
%J Journal of nonlinear sciences and its applications
%D 2014
%P 311-324
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.03/
%R 10.22436/jnsa.007.05.03
%G en
%F JNSA_2014_7_5_a2
Jiang, Yong; Rüzgar, Hüseyin; Liu, Wenjun; Tuna, Adnan. Some new generalizations of Ostrowski type inequalities on time scales involving combination of \(\triangle\)-integral means. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 311-324. doi : 10.22436/jnsa.007.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.03/

[1] Agarwal, R.; Bohner, M.; Peterson, A. Inequalities on time scales: a survey, Math. Inequal. Appl., Volume 4 (2001), pp. 535-557

[2] Ahmad, F.; Cerone, P.; Dragomir, S. S.; Mir, N. A. On some bounds of Ostrowski and Čebyšev type, J. Math. Inequal., Volume 4 (2010), pp. 53-65

[3] Atici, F. M.; Biles, D. C.; Lebedinsky, A. An application of time scales to economics, Math. Comput. Modelling, Volume 43 (2006), pp. 718-726

[4] Bohner, M.; Fan, M.; Zhang, J. M. Periodicity of scalar dynamic equations and applications to population models, J. Math. Anal. Appl., Volume 330 (2007), pp. 1-9

[5] Bohner, M.; A. Peterson Dynamic equations on time scales, Birkhäuser Boston, Boston, MA, 2001

[6] Bohner, M.; Peterson, A. Advances in dynamic equations on time scales, Birkhäuser Boston, Boston, MA, 2003

[7] Bohner, M.; Matthews, T. The Grüss inequality on time scales, Commun. Math. Anal., (electronic)., Volume 3 (2007), pp. 1-8

[8] Bohner, M.; Matthews, T. Ostrowski inequalities on time scales, JIPAM. J. Inequal. Pure Appl. Math., Volume 9 (2008), pp. 1-8

[9] Bohner, M.; Mathews, T.; A. Tuna Diamond-alpha Grüss type inequalities on time scales, Int. J. Dyn. Syst. Differ. Equ., Volume 3 (2011), pp. 234-247

[10] Bohner, M.; Mathews, T.; Tuna, A. Weighted Ostrowski-Grüss inequalities on time scales, Afr. Diaspora J. Math., Volume 12 (2011), pp. 89-99

[11] Cerone, P. A new Ostrowski type inequality involving integral means over end intervals, Tamkang J. Math., Volume 33 (2002), pp. 109-118

[12] Dinu, C. Ostrowski type inequalities on time scales, An. Univ. Craiova Ser. Mat. Inform., Volume 34 (2007), pp. 43-58

[13] Dragomir, S. S.; Cerone, P.; Roumeliotis, J.; Wang, S. A. A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Volume 42(90) (1999), pp. 301-314

[14] Dragomir, S. S. A generalization of the Ostrowski integral inequality for mappings whose derivatives belong to \(L_p[a; b]\) and applications in numerical integration, J. Math. Anal. Appl., Volume 255 (2001), pp. 605-626

[15] Dragomir, S. S. Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation, Arch. Math. (Basel), Volume 91 (2008), pp. 450-460

[16] Dragomir, S. S. Ostrowski's type inequalities for some classes of continuous functions of selfadjoint operators in Hilbert spaces, Comput. Math. Appl., Volume 62 (2011), pp. 4439-4448

[17] Dragomir, S. S. Refinements of the Ostrowski inequality in terms of the cumulative variation and applications, Analysis (Berlin), Volume 34 (2014), pp. 223-240

[18] Hilger, S. Ein Mabkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Univarsi. Würzburg, 1988

[19] S. Hussain Generalization of Ostrowski and Čebyšev type inequalities involving many functions, Aequationes Math., Volume 85 (2013), pp. 409-419

[20] Hussain, S.; Latif, M. A.; M. Alomari Generalized double-integral Ostrowski type inequalities on time scales, Appl. Math. Lett., Volume 24 (2011), pp. 1461-1467

[21] Kac, V.; Cheung, P. Quantum Calculus, Springer-Verlag, New York, 2002

[22] Li, W. N. Some delay integral inequalities on time scales , Comput. Math. Appl., Volume 59 (2010), pp. 1929-1936

[23] Li, W. N.; Sheng, W. H. Some Gronwall type inequalities on time scales, J. Math. Inequal., Volume 4 (2010), pp. 67-76

[24] Lakshmikantham, V.; Sivasundaram, S.; Kaymakcalan, B. Dynamic systems on measure chains, Kluwer Acad. Publ., Dordrecht, 1996

[25] G. Lapenta Particle simulations of space weather, J. Comput. Phys., Volume 231 (2012), pp. 795-821

[26] Liu, W. J.; Ngô, Q.-A. An Ostrowski-Grüss type inequality on time scales, Comput. Math. Appl., Volume 58 (2009), pp. 1207-1210

[27] Liu, W. J.; Ngô, Q.-A. A generalization of Ostrowski inequality on time scales for k points, Appl. Math. Comput., Volume 203 (2008), pp. 754-760

[28] Liu, W. J.; Ngô, Q.-A.; Chen, W. B. A perturbed Ostrowski-type inequality on time scales for k points for functions whose second derivatives are bounded, J. Inequal. Appl., Art. ID 597241, Volume 2008 (2008), pp. 1-12

[29] Liu, W. J.; Ngô, Q.-A.; W. B. Chen A new generalization of Ostrowski type inequality on time scales, An. Ştiinţ. Univ. ''Ovidius'' Constanţa Ser. Mat., Volume 17 (2009), pp. 101-114

[30] Liu, W. J.; Ngô, Q.-A.; Chen, W. B. Ostrowski type inequalities on time scales for double integrals, Acta Appl. Math., Volume 110 (2010), pp. 477-497

[31] Liu, W. J.; Tuna, A. Weighted Ostrowski, Trapezoid and Grüss type inequalities on time scales, J. Math. Inequal., Volume 6 (2012), pp. 381-399

[32] Liu, W. J.; Tuna, A.; Jiang, Y. New weighted Ostrowski and Ostrowski-Grüss Type inequalities on time scales, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 60 (2014), pp. 57-76

[33] Liu, W. J.; Tuna, A.; Jiang, Y. On weighted Ostrowski type, Trapezoid type, Grüss type and Ostrowski-Grüss like inequalities on time scales, Appl. Anal., Volume 93 (2014), pp. 551-571

[34] Ngo, Q.-A.; Liu, W. J. A sharp Grüss type inequality on time scales and application to the sharp Ostrowski- Grüss inequality, Commun. Math. Anal., Volume 6 (2009), pp. 33-41

[35] A. Ostrowski Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert , Comment. Math. Helv., Volume 10 (1937), pp. 226-227

[36] Sarikaya, M. Z.; Aktan, N.; Yildirim, H. On weighted Čebyšev-Grüss type inequalities on time scales, J. Math. Inequal., Volume 2 (2008), pp. 185-195

[37] Sarikaya, M. Z. New weighted Ostrowski and Čebyšev type inequalities on time scales, Comput. Math. Appl., Volume 60 (2010), pp. 1510-1514

[38] Soria-Hoyo, C.; Pontiga, F.; Castellanos, A. A PIC based procedure for the integration of multiple time scale problems in gas discharge physics, J. Comput. Phys., Volume 228 (2009), pp. 1017-1029

[39] Tseng, K.-L.; Hwang, S. R.; Dragomir, S. S. Generalizations of weighted Ostrowski type inequalities for mappings of bounded variation and their applications, Comput. Math. Appl., Volume 55 (2008), pp. 1785-1793

[40] Tuna, A.; Daghan, D. Generalization of Ostrowski and Ostrowski-Grüss type inequalities on time scales, Comput. Math. Appl., Volume 60 (2010), pp. 803-811

[41] Tuna, A.; Jiang, Y.; Liu, W. J. Weighted Ostrowski, Ostrowski-Grüss and Ostrowski- Čebyhev Type Inequalities on Time Scales, Publ. Math. Debrecen, Volume 81 (2012), pp. 81-102

Cité par Sources :