Voir la notice de l'article provenant de la source International Scientific Research Publications
$\|f(x + y) - f(x) - f(y)\| \leq \| \rho( 2f (\frac{ x + y}{ 2}) - f(x) - f(y) ) \|, \qquad (1)$ |
$\|2f (\frac{ x + y}{ 2}) - f(x) - f(y)\| \leq \| \rho(f(x + y) - f(x) - f(y) ) \|, \qquad (2)$ |
Park, Choonkil 1
@article{JNSA_2014_7_5_a1, author = {Park, Choonkil}, title = {Additive \(\rho\)--functional inequalities}, journal = {Journal of nonlinear sciences and its applications}, pages = {296-310}, publisher = {mathdoc}, volume = {7}, number = {5}, year = {2014}, doi = {10.22436/jnsa.007.05.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.02/} }
TY - JOUR AU - Park, Choonkil TI - Additive \(\rho\)--functional inequalities JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 296 EP - 310 VL - 7 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.02/ DO - 10.22436/jnsa.007.05.02 LA - en ID - JNSA_2014_7_5_a1 ER -
Park, Choonkil. Additive \(\rho\)--functional inequalities. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 296-310. doi : 10.22436/jnsa.007.05.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.02/
[1] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66
[2] Hyperstability of the Jensen functional equation, Acta Math. Hungar., Volume 142 (2014), pp. 353-365
[3] On the functional equations related to a problem of Z. Boros and Z. Daróczy, Acta Math. Hungar., Volume 138 (2013), pp. 329-340
[4] A functional equation involving comparable weighted quasi-arithmetic means, Acta Math. Hungar., Volume 138 (2013), pp. 147-155
[5] Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., Volume 71 (2006), pp. 149-161
[6] On some functional inequalities related to the logarithmic mean, Acta Math. Hungar., Volume 128 (2010), pp. 31-45
[7] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), p. 431-43
[8] Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math., Volume 62 (2001), pp. 303-309
[9] On a problem by K. Nikodem, Math. Inequal. Appl., Volume 5 (2002), pp. 707-710
[10] On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224
[11] A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal.- TMA, Volume 69 (2008), pp. 3405-3408
[12] Functional inequalities associated with Jordan-von Neumann-type additive functional equations , J. Inequal. Appl., Article ID 41820 , Volume 2007 (2007), pp. 1-13
[13] A system of two inhomogeneous linear functional equations, Acta Math. Hungar., Volume 140 (2013), pp. 377-406
[14] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[15] On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., Volume 66 (2003), pp. 191-200
[16] A Collection of the Mathematical Problems, Interscience Publ. , New York, 1960
Cité par Sources :