Voir la notice de l'article provenant de la source International Scientific Research Publications
ORegan, Donal 1
@article{JNSA_2014_7_5_a0, author = {ORegan, Donal}, title = {Lefschetz type theorems for a class of noncompact mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {288-295}, publisher = {mathdoc}, volume = {7}, number = {5}, year = {2014}, doi = {10.22436/jnsa.007.05.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.01/} }
TY - JOUR AU - ORegan, Donal TI - Lefschetz type theorems for a class of noncompact mappings JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 288 EP - 295 VL - 7 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.01/ DO - 10.22436/jnsa.007.05.01 LA - en ID - JNSA_2014_7_5_a0 ER -
%0 Journal Article %A ORegan, Donal %T Lefschetz type theorems for a class of noncompact mappings %J Journal of nonlinear sciences and its applications %D 2014 %P 288-295 %V 7 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.01/ %R 10.22436/jnsa.007.05.01 %G en %F JNSA_2014_7_5_a0
ORegan, Donal. Lefschetz type theorems for a class of noncompact mappings. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 288-295. doi : 10.22436/jnsa.007.05.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.01/
[1] A Lefschetz fixed point theorem for admissible maps in Fréchet spaces, Dynamic Systems and Applications, Volume 16 (2007), pp. 1-12
[2] Fixed point theory for compact absorbing contractive admissible type maps , Applicable Analysis, Volume 87 (2008), pp. 497-508
[3] Fixed point theorems on admissible multiretracts applicable to dynamical systems, Fixed Point Theory, Volume 12 (2011), pp. 255-264
[4] The coincidence problem for compositions of set valued maps, Bull. Austral. Math. Soc., Volume 41 (1990), pp. 421-434
[5] Spaces and maps approximation and fixed points, Jour. Computational and Appl. Mathematics, Volume 113 (2000), pp. 283-308
[6] General fixed point theorems for non-convex set valued maps, C.R. Acad. Sci. Paris, Volume 312 (1991), pp. 433-438
[7] General Topology, Heldermann Verlag, Berlin, 1989
[8] The Lefschetz fixed point theorem for multi-valued maps of non-metrizable spaces , Fundamenta Mathematicae, Volume 92 (1976), pp. 213-222
[9] Topological fixed point theory of multivalued mappings, Kluwer Acad. Publishers, Dordrecht, 1999
[10] Some general theorems in coincidence theory, J. Math. Pures et Appl., Volume 60 (1981), pp. 361-373
[11] Fixed points of mappings in Klee admissible spaces, Control and Cybernetics, Volume 36 (2007), pp. 825-832
[12] Fixed point theory, Springer , New York, 2003
[13] General Topology, D. Van Nostrand Reinhold Co., New York, 1955
[14] Fixed point theory on extension type spaces and essential maps on topological spaces, Fixed Point Theory and Applications, Volume 2004 (2004), pp. 13-20
[15] Fixed point theory for compact absorbing contractions in extension type spaces, CUBO, Volume 12 (2010), pp. 199-215
[16] Fixed point theory in generalized approximate neighborhood extension spaces, Fixed Point Theory, Volume 12 (2011), pp. 155-164
[17] Lefschetz fixed point theorems in generalized neighborhood extension spaces with respect to a map, Rend. Circ. Mat. Palermo, Volume 59 (2010), pp. 319-330
[18] Fixed point theory for extension type maps in topological spaces, Applicable Analysis, Volume 88 (2009), pp. 301-308
[19] Periodic points for compact absorbing contractions in extension type spaces, Commun. Appl. Anal., Volume 14 (2010), pp. 1-11
Cité par Sources :