Lefschetz type theorems for a class of noncompact mappings
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 288-295.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we present new fixed point results for general compact absorbing type contractions in new extension spaces.
DOI : 10.22436/jnsa.007.05.01
Classification : 47H10
Keywords: Extension spaces, fixed point theory, compact absorbing contractions.

ORegan, Donal 1

1 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
@article{JNSA_2014_7_5_a0,
     author = {ORegan, Donal},
     title = {Lefschetz type theorems for a class of noncompact mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {288-295},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {2014},
     doi = {10.22436/jnsa.007.05.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.01/}
}
TY  - JOUR
AU  - ORegan, Donal
TI  - Lefschetz type theorems for a class of noncompact mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 288
EP  - 295
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.01/
DO  - 10.22436/jnsa.007.05.01
LA  - en
ID  - JNSA_2014_7_5_a0
ER  - 
%0 Journal Article
%A ORegan, Donal
%T Lefschetz type theorems for a class of noncompact mappings
%J Journal of nonlinear sciences and its applications
%D 2014
%P 288-295
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.01/
%R 10.22436/jnsa.007.05.01
%G en
%F JNSA_2014_7_5_a0
ORegan, Donal. Lefschetz type theorems for a class of noncompact mappings. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 5, p. 288-295. doi : 10.22436/jnsa.007.05.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.05.01/

[1] Agarwal, R. P.; D.O'Regan A Lefschetz fixed point theorem for admissible maps in Fréchet spaces, Dynamic Systems and Applications, Volume 16 (2007), pp. 1-12

[2] Agarwal, R. P.; D.O'Regan Fixed point theory for compact absorbing contractive admissible type maps , Applicable Analysis, Volume 87 (2008), pp. 497-508

[3] Andres, J.; Gorniewicz, L. Fixed point theorems on admissible multiretracts applicable to dynamical systems, Fixed Point Theory, Volume 12 (2011), pp. 255-264

[4] Ben-El-Mechaiekh, H. The coincidence problem for compositions of set valued maps, Bull. Austral. Math. Soc., Volume 41 (1990), pp. 421-434

[5] Ben-El-Mechaiekh, H. Spaces and maps approximation and fixed points, Jour. Computational and Appl. Mathematics, Volume 113 (2000), pp. 283-308

[6] Ben-El-Mechaiekh, H.; Deguire, P. General fixed point theorems for non-convex set valued maps, C.R. Acad. Sci. Paris, Volume 312 (1991), pp. 433-438

[7] Engelking, R. General Topology, Heldermann Verlag, Berlin, 1989

[8] Fournier, G.; Gorniewicz, L. The Lefschetz fixed point theorem for multi-valued maps of non-metrizable spaces , Fundamenta Mathematicae, Volume 92 (1976), pp. 213-222

[9] Gorniewicz, L. Topological fixed point theory of multivalued mappings, Kluwer Acad. Publishers, Dordrecht, 1999

[10] Gorniewicz, L.; Granas, A. Some general theorems in coincidence theory, J. Math. Pures et Appl., Volume 60 (1981), pp. 361-373

[11] Gorniewicz, L.; M. Slosarski Fixed points of mappings in Klee admissible spaces, Control and Cybernetics, Volume 36 (2007), pp. 825-832

[12] Granas, A.; Dugundji, J. Fixed point theory, Springer , New York, 2003

[13] Kelley, J. L. General Topology, D. Van Nostrand Reinhold Co., New York, 1955

[14] D. O'Regan Fixed point theory on extension type spaces and essential maps on topological spaces, Fixed Point Theory and Applications, Volume 2004 (2004), pp. 13-20

[15] O'Regan, D. Fixed point theory for compact absorbing contractions in extension type spaces, CUBO, Volume 12 (2010), pp. 199-215

[16] O'Regan, D. Fixed point theory in generalized approximate neighborhood extension spaces, Fixed Point Theory, Volume 12 (2011), pp. 155-164

[17] D. O'Regan Lefschetz fixed point theorems in generalized neighborhood extension spaces with respect to a map, Rend. Circ. Mat. Palermo, Volume 59 (2010), pp. 319-330

[18] D. O'Regan Fixed point theory for extension type maps in topological spaces, Applicable Analysis, Volume 88 (2009), pp. 301-308

[19] O'Regan, D. Periodic points for compact absorbing contractions in extension type spaces, Commun. Appl. Anal., Volume 14 (2010), pp. 1-11

Cité par Sources :