Proper $CQ^*$-ternary algebras
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 4, p. 278-287.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, modifying the construction of a $C^*$-ternary algebra from a given $C^*$-algebra, we define a proper $CQ^*$-ternary algebra from a given proper $CQ^*$-algebra. We investigate homomorphisms in proper $CQ^*$-ternary algebras and derivations on proper $CQ^*$-ternary algebras associated with the Cauchy functional inequality
$\|f(x) + f(y) + f(z)\| \leq\| f(x + y + z)\|.$
We moreover prove the Hyers-Ulam stability of homomorphisms in proper $CQ^*$-ternary algebras and of derivations on proper $CQ^*$-ternary algebras associated with the Cauchy functional equation
$f(x + y + z) = f(x) + f(y) + f(z).$
DOI : 10.22436/jnsa.007.04.06
Classification : 47B48, 39B72, 47J05, 39B52, 17A40, 47L60
Keywords: proper \(CQ^*\)-ternary homomorphism, proper \(CQ^*\)-ternary derivation, Cauchy functional equation, Hyers-Ulam stability.

Park, Choonkil 1

1 Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
@article{JNSA_2014_7_4_a5,
     author = {Park, Choonkil},
     title = {Proper {\(CQ^*\)-ternary} algebras},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {278-287},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2014},
     doi = {10.22436/jnsa.007.04.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.06/}
}
TY  - JOUR
AU  - Park, Choonkil
TI  - Proper \(CQ^*\)-ternary algebras
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 278
EP  - 287
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.06/
DO  - 10.22436/jnsa.007.04.06
LA  - en
ID  - JNSA_2014_7_4_a5
ER  - 
%0 Journal Article
%A Park, Choonkil
%T Proper \(CQ^*\)-ternary algebras
%J Journal of nonlinear sciences and its applications
%D 2014
%P 278-287
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.06/
%R 10.22436/jnsa.007.04.06
%G en
%F JNSA_2014_7_4_a5
Park, Choonkil. Proper \(CQ^*\)-ternary algebras. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 4, p. 278-287. doi : 10.22436/jnsa.007.04.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.06/

[1] Adam, M. On the stability of some quadratic functional equation, J. Nonlinear Sci. Appl., Volume 4 (2011), pp. 50-59

[2] Amyari, M.; M. S. Moslehian Approximately ternary semigroup homomorphisms, Lett. Math. Phys., Volume 77 (2006), pp. 1-9

[3] Antoine, J. P.; Inoue, A.; Trapani, C. Partial *-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002

[4] Bagarello, F. Applications of topological *-algebras of unbounded operators, J. Math. Phys., Volume 39 (1998), pp. 6091-6105

[5] F. Bagarello Fixed point results in topological *-algebras of unbounded operators, Publ. RIMS Kyoto Univ., Volume 37 (2001), pp. 397-418

[6] Bagarello, F. Applications of topological *-algebras of unbounded operators to modified quons, Nuovo Cimento B, Volume 117 (2002), pp. 593-611

[7] Bagarello, F.; Trapani, C. A note on the algebraic approach to the ''almost'' mean field Heisenberg model, Nuovo Cimento B, Volume 108 (1993), pp. 779-784

[8] Bagarello, F.; Trapani, C. States and representations of \(CQ^*\)-algebras, Ann. Inst. H. Poincaré, Volume 61 (1994), pp. 103-133

[9] Bagarello, F.; Trapani, C. The Heisenberg dynamics of spin systems: a quasi-*-algebras approach, J. Math. Phys., Volume 37 (1996), pp. 4219-4234

[10] Bagarello, F.; Trapani, C.; Triolo, S. Quasi *-algebras of measurable operators, Studia Math., Volume 172 (2006), pp. 289-305

[11] Cădariu, L.; Găvruţa, L.; P. Găvruţa On the stability of an affine functional equation, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 60-67

[12] Chahbi, A.; Bounader, N. On the generalized stability of d'Alembert functional equation, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 198-204

[13] S. Czerwik Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002

[14] Czerwik, S. Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003

[15] Eskandani, G. Z.; Găruta, P. Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2- Banach spaces, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 459-465

[16] Gajda, Z. On stability of additive mappings, Internat. J. Math. Math. Sci., Volume 14 (1991), pp. 431-434

[17] P. Găvruta A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436

[18] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224

[19] Hyers, D. H.; Isac, G.; Th. M. Rassias Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998

[20] Hyers, D. H.; Isac, G.; Rassias, Th. M. On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 425-430

[21] Isac, G.; Rassias, Th. M. Stability of \(\psi\)-additive mappings : Applications to nonlinear analysis, Internat. J. Math. Math. Sci., Volume 19 (1996), pp. 219-228

[22] Jung, S. On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 204 (1996), pp. 221-226

[23] C. Park Homomorphisms between Poisson \(JC^*\)-algebras, Bull. Braz. Math. Soc., Volume 36 (2005), pp. 79-97

[24] Park, C. Approximate homomorphisms on \(JB^*\)-triples, J. Math. Anal. Appl., Volume 306 (2005), pp. 375-381

[25] C. Park Isomorphisms between \(C^*\)-ternary algebras, J. Math. Phys., 47, no. 10, 103512, 2006

[26] Park, C. Orthogonal stability of a cubic-quartic functional equation, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 28-36

[27] Park, C.; Gordji, M. Eshaghi; A. Najati Generalized Hyers-Ulam stability of an AQCQ-functional equation in non-Archimedean Banach spaces , J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 272-281

[28] Park, C.; Rassias, Th. M. Homomorphisms in \(C^*\)-ternary algebras and \(JB^*\)-triples, J. Math. Anal. Appl., Volume 337 (2008), pp. 13-20

[29] Park, C.; Rassias, Th. M. Homomorphisms and derivations in proper \(JCQ^*\)-triples, J. Math. Anal. Appl., Volume 337 (2008), pp. 1404-1414

[30] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., Volume 108 (1984), pp. 445-446

[31] Rassias, J. M. Solution of a problem of Ulam, J. Approx. Theory, Volume 57 (1989), pp. 268-273

[32] Rassias, M. J.; J. M. Rassias product-sum stability of an Euler-Lagrange functional equation, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 265-271

[33] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[34] Rassias, Th. M. Problem 16, 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math., Volume 39 (1990), pp. 292-293

[35] Rassias, Th. M. The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., Volume 246 (2000), pp. 352-378

[36] Rassias, Th. M. On the stability of functional equations in Banach spaces , J. Math. Anal. Appl., Volume 251 (2000), pp. 264-284

[37] Rassias, Th. M. Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht , Boston and London, 2003

[38] Rassias, Th. M.; Šemrl, P. On the behaviour of mappings which do not satisfy Hyers-Ulam stability , Proc. Amer. Math. Soc., Volume 114 (1992), pp. 989-993

[39] Rassias, Th. M.; P. Šemrl On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., Volume 173 (1993), pp. 325-338

[40] Ravi, K.; Thandapani, E.; B. V. Senthil Kumar Solution and stability of a reciprocal type functional equation in several variables, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 18-27

[41] Schin, S.; Ki, D.; Chang, J.; Kim, M. Random stability of quadratic functional equations: a fixed point approach , J. Nonlinear Sci. Appl., Volume 4 (2011), pp. 37-49

[42] F. Skof Proprieta locali e approssimazione di operatori , Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129

[43] Trapani, C. Some seminorms on quasi-*-algebras, Studia Math., Volume 158 (2003), pp. 99-115

[44] C. Trapani Bounded elements and spectrum in Banach quasi *-algebras, Studia Math., Volume 172 (2006), pp. 249-273

[45] S. M. Ulam A Collection of the Mathematical Problems, Interscience Publ., New York, 1960

[46] C. Zaharia On the probabilistic stability of the monomial functional equation, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 51-59

[47] Zolfaghari, S. Approximation of mixed type functional equations in p-Banach spaces, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 110-122

[48] Zettl, H. A characterization of ternary rings of operators, Adv. Math., Volume 48 (1983), pp. 117-143

Cité par Sources :