Voir la notice de l'article provenant de la source International Scientific Research Publications
$\|f(x) + f(y) + f(z)\| \leq\| f(x + y + z)\|.$ |
$f(x + y + z) = f(x) + f(y) + f(z).$ |
Park, Choonkil 1
@article{JNSA_2014_7_4_a5, author = {Park, Choonkil}, title = {Proper {\(CQ^*\)-ternary} algebras}, journal = {Journal of nonlinear sciences and its applications}, pages = {278-287}, publisher = {mathdoc}, volume = {7}, number = {4}, year = {2014}, doi = {10.22436/jnsa.007.04.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.06/} }
TY - JOUR AU - Park, Choonkil TI - Proper \(CQ^*\)-ternary algebras JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 278 EP - 287 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.06/ DO - 10.22436/jnsa.007.04.06 LA - en ID - JNSA_2014_7_4_a5 ER -
Park, Choonkil. Proper \(CQ^*\)-ternary algebras. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 4, p. 278-287. doi : 10.22436/jnsa.007.04.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.06/
[1] On the stability of some quadratic functional equation, J. Nonlinear Sci. Appl., Volume 4 (2011), pp. 50-59
[2] Approximately ternary semigroup homomorphisms, Lett. Math. Phys., Volume 77 (2006), pp. 1-9
[3] Partial *-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002
[4] Applications of topological *-algebras of unbounded operators, J. Math. Phys., Volume 39 (1998), pp. 6091-6105
[5] Fixed point results in topological *-algebras of unbounded operators, Publ. RIMS Kyoto Univ., Volume 37 (2001), pp. 397-418
[6] Applications of topological *-algebras of unbounded operators to modified quons, Nuovo Cimento B, Volume 117 (2002), pp. 593-611
[7] A note on the algebraic approach to the ''almost'' mean field Heisenberg model, Nuovo Cimento B, Volume 108 (1993), pp. 779-784
[8] States and representations of \(CQ^*\)-algebras, Ann. Inst. H. Poincaré, Volume 61 (1994), pp. 103-133
[9] The Heisenberg dynamics of spin systems: a quasi-*-algebras approach, J. Math. Phys., Volume 37 (1996), pp. 4219-4234
[10] Quasi *-algebras of measurable operators, Studia Math., Volume 172 (2006), pp. 289-305
[11] On the stability of an affine functional equation, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 60-67
[12] On the generalized stability of d'Alembert functional equation, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 198-204
[13] Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002
[14] Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003
[15] Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2- Banach spaces, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 459-465
[16] On stability of additive mappings, Internat. J. Math. Math. Sci., Volume 14 (1991), pp. 431-434
[17] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436
[18] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224
[19] Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998
[20] On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 425-430
[21] Stability of \(\psi\)-additive mappings : Applications to nonlinear analysis, Internat. J. Math. Math. Sci., Volume 19 (1996), pp. 219-228
[22] On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 204 (1996), pp. 221-226
[23] Homomorphisms between Poisson \(JC^*\)-algebras, Bull. Braz. Math. Soc., Volume 36 (2005), pp. 79-97
[24] Approximate homomorphisms on \(JB^*\)-triples, J. Math. Anal. Appl., Volume 306 (2005), pp. 375-381
[25] Isomorphisms between \(C^*\)-ternary algebras, J. Math. Phys., 47, no. 10, 103512, 2006
[26] Orthogonal stability of a cubic-quartic functional equation, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 28-36
[27] Generalized Hyers-Ulam stability of an AQCQ-functional equation in non-Archimedean Banach spaces , J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 272-281
[28] Homomorphisms in \(C^*\)-ternary algebras and \(JB^*\)-triples, J. Math. Anal. Appl., Volume 337 (2008), pp. 13-20
[29] Homomorphisms and derivations in proper \(JCQ^*\)-triples, J. Math. Anal. Appl., Volume 337 (2008), pp. 1404-1414
[30] On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., Volume 108 (1984), pp. 445-446
[31] Solution of a problem of Ulam, J. Approx. Theory, Volume 57 (1989), pp. 268-273
[32] product-sum stability of an Euler-Lagrange functional equation, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 265-271
[33] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[34] Problem 16, 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math., Volume 39 (1990), pp. 292-293
[35] The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., Volume 246 (2000), pp. 352-378
[36] On the stability of functional equations in Banach spaces , J. Math. Anal. Appl., Volume 251 (2000), pp. 264-284
[37] Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht , Boston and London, 2003
[38] On the behaviour of mappings which do not satisfy Hyers-Ulam stability , Proc. Amer. Math. Soc., Volume 114 (1992), pp. 989-993
[39] On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., Volume 173 (1993), pp. 325-338
[40] Solution and stability of a reciprocal type functional equation in several variables, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 18-27
[41] Random stability of quadratic functional equations: a fixed point approach , J. Nonlinear Sci. Appl., Volume 4 (2011), pp. 37-49
[42] Proprieta locali e approssimazione di operatori , Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129
[43] Some seminorms on quasi-*-algebras, Studia Math., Volume 158 (2003), pp. 99-115
[44] Bounded elements and spectrum in Banach quasi *-algebras, Studia Math., Volume 172 (2006), pp. 249-273
[45] A Collection of the Mathematical Problems, Interscience Publ., New York, 1960
[46] On the probabilistic stability of the monomial functional equation, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 51-59
[47] Approximation of mixed type functional equations in p-Banach spaces, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 110-122
[48] A characterization of ternary rings of operators, Adv. Math., Volume 48 (1983), pp. 117-143
Cité par Sources :