The existence of fixed and periodic point theorems in cone metric type spaces
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 4, p. 255-263.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider cone metric type spaces which are introduced as a generalization of symmetric and metric spaces by Khamsi and Hussain [M.A. Khamsi and N. Hussain, Nonlinear Anal. 73 (2010), 3123-3129]. Then we prove several fixed and periodic point theorems in cone metric type spaces.
DOI : 10.22436/jnsa.007.04.03
Classification : 47H10, 54H25, 47H09
Keywords: Metric type space, Fixed point, Periodic point, Property P, Property Q, Cone metric space.

Kumam, Poom 1 ; Rahimi, Hamidreza 2 ; Rad, Ghasem Soleimani 2

1 Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Bang Mod, Thrung Khru,, Bangkok, 10140, Thailand
2 Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, P.O. Box 13185/768, Tehran, Iran
@article{JNSA_2014_7_4_a2,
     author = {Kumam, Poom and Rahimi, Hamidreza and Rad, Ghasem Soleimani},
     title = {The existence of fixed and periodic point theorems in cone metric type spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {255-263},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2014},
     doi = {10.22436/jnsa.007.04.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.03/}
}
TY  - JOUR
AU  - Kumam, Poom
AU  - Rahimi, Hamidreza
AU  - Rad, Ghasem Soleimani
TI  - The existence of fixed and periodic point theorems in cone metric type spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 255
EP  - 263
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.03/
DO  - 10.22436/jnsa.007.04.03
LA  - en
ID  - JNSA_2014_7_4_a2
ER  - 
%0 Journal Article
%A Kumam, Poom
%A Rahimi, Hamidreza
%A Rad, Ghasem Soleimani
%T The existence of fixed and periodic point theorems in cone metric type spaces
%J Journal of nonlinear sciences and its applications
%D 2014
%P 255-263
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.03/
%R 10.22436/jnsa.007.04.03
%G en
%F JNSA_2014_7_4_a2
Kumam, Poom; Rahimi, Hamidreza; Rad, Ghasem Soleimani. The existence of fixed and periodic point theorems in cone metric type spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 4, p. 255-263. doi : 10.22436/jnsa.007.04.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.03/

[1] Abbas, M.; Jungck, G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 416-420

[2] Abbas, M.; Rhoades, B. E. Fixed and periodic point results in cone metric spaces, Appl. Math. Lett., Volume 22 (2009), pp. 511-515

[3] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. J., Volume 3 (1922), pp. 133-181

[4] L. B. Ćirić A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273

[5] Ćvetković, A. S.; Stanić, M. P.; Dimitrijević, S.; Simić, S. Common fixed point theorems for four mappings on cone metric type space, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-15

[6] K. Deimling Nonlinear Functional Analysis, Springer-Verlag, , 1985

[7] Hardy, G. E.; Rogers, T. D. A generalization of a fixed point theorem of Reich, Canad. Math. Bull., Volume 16 (1973), pp. 201-206

[8] Huang, L. G.; X. Zhang Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1467-1475

[9] Janković, S.; Kadelburg, Z.; Radenović, S.; Rhoades, B. E. Assad-Kirk-type fixed point theorems for a pair of nonself mappings on cone metric spaces, Fixed Point Theory Appl., Volume 2009 (2009), pp. 1-16

[10] Jeong, G. S.; B. E. Rhoades Maps for which \(F(T) = F(T^n)\), Fixed Point Theory Appl., Volume 6 (2005), pp. 87-131

[11] Jovanović, M.; Kadelburg, Z.; Radenović, S. Common fixed point results in metric-type spaces, Fixed Point Theory Appl. , Volume 2010 (2010), pp. 1-15

[12] Jungck, G. Commuting maps and fixed points, Amer. Math. Monthly, Volume 83 (1976), pp. 261-263

[13] Kadelburg, Z.; Radenović, S. Some common fixed point results in non-normal cone metric spaces, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 193-202

[14] Kannan, R. Some results on fixed points, Bull. Calcutta Math. Soc., Volume 10 (1968), pp. 71-76

[15] M. A. Khamsi Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl., Volume 2010 (2007), pp. 1-7

[16] Khamsi, M. A.; Hussain, N. KKM mappings in metric type spaces, Nonlinear Anal., Volume 73 (2010), pp. 3123-3129

[17] Mohanta, S. K.; Maitra, R. A characterization of completeness in cone metric spaces, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 227-233

[18] Nashine, H. K.; Abbas, M. Common fixed point of mappings satisfying implicit contractive conditions in TVS-valued ordered cone metric spaces, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 205-215

[19] Radenović, S. Common fixed points under contractive conditions in cone metric spaces, Comput. Math. Appl., Volume 58 (2009), pp. 1273-1278

[20] Radojević, S.; Paunović, Lj.; Radenović, S. Abstract metric spaces and Hardy-Rogers-type theorems, Appl. Math. Lett., Volume 24 (2011), pp. 553-558

[21] Rahimi, H.; Radenović, S.; Rad, G. Soleimani; Kumam, P. Quadrupled fixed point results in abstract metric spaces , Comp. Appl. Math., DOI 10.1007/s40314-013-0088-5., 2013

[22] Rahimi, H.; Rhoades, B. E.; Radenović, S.; Rad, G. Soleimani Fixed and periodic point theorems for T- contractions on cone metric spaces, Filomat, DOI 10.2298/FIL1305881R, Volume 27 (5) (2013), pp. 881-888

[23] Rahimi, H.; Rad, G. Soleimani Note on ''Common fixed point results for noncommuting mappings without continuity in cone metric spaces'' , Thai. J. Math., Volume 11 (3) (2013), pp. 589-599

[24] Rahimi, H.; Vetro, P.; Rad, G. Soleimani Some common fixed point results for weakly compatible mappings in cone metric type space, Miskolc. Math. Notes., Volume 14 (1) (2013), pp. 233-243

[25] Rezapour, S.; Hamlbarani, R. Some note on the paper cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 345 (2008), pp. 719-724

[26] B. E. Rhoades A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc., Volume 266 (1977), pp. 257-290

[27] Song, G.; Sun, X.; Zhao, Y.; Wang, G. New common fixed point theorems for maps on cone metric spaces, Appl. Math. Lett., Volume 23 (2010), pp. 1033-1037

[28] Wang, S.; Guo, B. Distance in cone metric spaces and common fixed point theorems, Appl. Math. Lett., Volume 24 (2011), pp. 1735-1739

[29] W. A. Wilson On semi-metric spaces, Amer. Jour. Math., Volume 53 (1931), pp. 361-373

Cité par Sources :