Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 4, p. 246-254.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Recently, Wang and Xie [T. Wang, F. Xie, J. Nonlinear Sci. Appl., 1 (2009), 206-212] developed monotone iterative method for Riemann-Liouville fractional differential equations with integral boundary conditions with the strong hypothesis of locally Hölder continuity and obtained existence and uniqueness of a solution for the problem. In this paper, we apply the comparison result without locally Hölder continuity due to Vasundhara Devi to develop monotone iterative method for the problem and obtain existence and uniqueness of a solution of the problem.
DOI : 10.22436/jnsa.007.04.02
Classification : 34A12, 34C60, 34A45
Keywords: Fractional differential equations, existence and uniqueness, lower and upper solutions, integral boundary conditions.

Nanware, J. A. 1 ; Dhaigude, D. B. 2

1 Department of Mathematics, Shrikrishna Mahavidyalaya, Gunjoti - 413 606, Dist. Osmanabad (M.S), India
2 Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431 004, India
@article{JNSA_2014_7_4_a1,
     author = {Nanware, J. A. and Dhaigude, D. B.},
     title = {Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {246-254},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2014},
     doi = {10.22436/jnsa.007.04.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.02/}
}
TY  - JOUR
AU  - Nanware, J. A.
AU  - Dhaigude, D. B.
TI  - Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 246
EP  - 254
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.02/
DO  - 10.22436/jnsa.007.04.02
LA  - en
ID  - JNSA_2014_7_4_a1
ER  - 
%0 Journal Article
%A Nanware, J. A.
%A Dhaigude, D. B.
%T Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions
%J Journal of nonlinear sciences and its applications
%D 2014
%P 246-254
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.02/
%R 10.22436/jnsa.007.04.02
%G en
%F JNSA_2014_7_4_a1
Nanware, J. A.; Dhaigude, D. B. Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 4, p. 246-254. doi : 10.22436/jnsa.007.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.04.02/

[1] Agarwal, R. P.; Andrade, B. de; Siracusa, G. On Fractional Integro-Differential Equations with State-dependent Delay, Comp. Math. Appl., Volume 62 (2011), pp. 1143-1149

[2] Agarwal, R. P.; Benchohra, M.; S. Mamani A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions , Acta Appl. Math., Volume 109 (2010), pp. 973-1033

[3] Agarwal, R. P.; Andrade, B. de; C. Cuevas On type of periodicity and Ergodicity to a class of Fractional Order Differential Equations, Adv. Differen. Eqs., Hindawi Publl.Corp., NY , USA, Article ID 179750 (2010), pp. 1-25

[4] Cuesta, E. Asymptotic Behaviour of the Solutions of Fractional Integro-Differential Equations and Some Time Discretizations, Dis. Cont. Dyn. Sys., Series A (2007), pp. 277-285

[5] Cuevas, C.; Soto, H.; A. Sepulveda Almost Periodic and Pseudo-almost Periodic Solutions to Fractional Differential and Integro-Differential Equations, Appl. Math. Comput., Volume 218 (2011), pp. 1735-1745

[6] Devi, J. V. Generalized Monotone Method for Periodic Boundary Value Problems of Caputo Fractional Differential Equations, Commun. Appl. Anal., Volume 12 (2008), pp. 399-406

[7] Devi, J. V.; McRae, F. A.; Drici, Z. Variational Lyapunov Method for Fractional Differential Equations, Comp. Math. Appl., Volume 64 (2012), pp. 2982-2989

[8] Dhaigude, D. B.; Nanware, J. A.; Nikam, V. R. Monotone Technique for System of Caputo Fractional Differential Equations with Periodic Boundary Conditions, Dyn. Conti. Dis. Impul. Sys., Series-A :Mathematical Analysis, Volume 19 (2012), pp. 575-584

[9] Dhaigude, D. B.; Nanware, J. A. Monotone Technique for Finite System of Caputo Fractional Differential Equations with Periodic Boundary Conditions, , , To appear

[10] Diagana, T.; Mophou, G. M.; G. M. N'Gue're'kata On the Existence of Mild Solutions to Some Semilinear Fractional Integro-Differential Equations, Electron. J. Qual. Theory Differ. Equ., Volume 58 (2010), pp. 1-17

[11] G. M. N'Gue're'kata A Cauchy Problem for Some Fractional Abstract Differential Equations with Non-local Conditions, Nonlinear Anal., Volume 70 (2009), pp. 1873-1876

[12] Jankwoski, T. Differential Equations with Integral Boundary Conditions, J. Comput. Appl. Math., Volume 147 (2002), pp. 1-8

[13] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Applications of Fractional Differential Equations, North Holland Mathematical Studies, Vol.204. Elsevier(North-Holland) Sciences Publishers, Amsterdam, 2006

[14] Kumar, P.; Pandey, D. N.; Bahuguna, D. On a new class of abstract impulsive functional differential equations of fractional order, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 102-114

[15] Ladde, G. S.; Lakshmikantham, V.; Vatsala, A. S. Monotone Iterative Techniques for Nonlinear Differential Equations , Pitman Advanced Publishing Program, London, 1985

[16] Lakshmikantham, V.; Vatsala, A. S. Theory of Fractional Differential Equations and Applications , Communications in Applied Analysis, Volume 11 (2007), pp. 395-402

[17] Lakshmikantham, V.; Vatsala, A. S. Basic Theory of Fractional Differential Equations and Applications, Nonlinear Anal., Volume 69 (2008), pp. 2677-2682

[18] Lakshmikantham, V.; Vatsala, A. S. General Uniqueness and Monotone Iterative Technique for Fractional Differential Equations, Appl. Math. Letters, Volume 21 (2008), pp. 828-834

[19] Lakshmikantham, V.; Leela, S. Differential and Integral Inequalities Vol.I., Academic Press, Newyork, 1969

[20] Lakshmikantham, V.; Leela, S.; Devi, J. V. Theory and Applications of Fractional Dynamic Systems, Cambridge Scientific Publishers Ltd., , 2009

[21] Liu, Y.; H. Shi Existence of unbounded positive solutions for BVPs of singular fractional differential equations , J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 281-293

[22] F. A. Mc Rae Monotone Iterative Technique and Existence Results for Fractional Differential Equations , Nonlinear Anal., Volume 71 (2009), pp. 6093-6096

[23] Nanware, J. A. Monotone Method In Fractional Differential Equations and Applications, Ph.D Thesis, Dr. Babasaheb Ambedkar Marathwada University, 2013

[24] Nanware, J. A.; Dhaigude, D. B. Boundary Value Problems for Differential Equations of Noninteger Order Involving Caputo Fractional Derivative, Proceedings of Jangjeon Mathematical Society, South Korea, To appear

[25] J. A. Nanware Existence and Uniqueness Results for Fractional Differential Equations Via Monotone Method, Bull. Marathwada Math. Soc., Volume 14 (2013), pp. 39-56

[26] Nanware, J. A.; Dhaigude, D. B. Existence and Uniqueness of solution of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions, Int. J. Nonlinear Sci., Volume 14 (2012), pp. 410-415

[27] Nanware, J. A.; Dhaigude, D. B. Monotone Iterative Scheme for System of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions, Math. Modelling Sci. Computation, Springer-Verlag, Volume 283 (2012), pp. 395-402

[28] Podlubny, I. Fractional Differential Equations, Academic Press, San Diego, 1999

[29] Wang, T.; Xie, F. Existence and Uniqueness of Fractional Differential Equations with Integral Boundary Conditions, J. Nonlinear Sci. Appl., Volume 1 (2009), pp. 206-212

Cité par Sources :