Positive periodic solution for a nonlinear neutral delay population equation with feedback control
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 218-228.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, sufficient conditions are investigated for the existence of positive periodic solution for a nonlinear neutral delay population system with feedback control. The proof is based on the fixed-point theorem of strict-set-contraction operators. We also present an example of nonlinear neutral delay population system with feedback control to show the validity of conditions and efficiency of our results.
DOI : 10.22436/jnsa.007.03.08
Classification : 34K40, 92D25, 47H10
Keywords: Fixed point theory, neutral nonlinear equation, feedback control, strict-set-contraction.

Nasertayoob, Payam 1 ; Vaezpour, S. Mansour 1

1 Department of Mathematics, Amirkabir University of Technology (Polytechnic), Hafez Ave., P. O. Box 15914, Tehran, Iran
@article{JNSA_2014_7_3_a7,
     author = {Nasertayoob, Payam and Vaezpour, S. Mansour},
     title = {Positive periodic solution for a nonlinear neutral delay population equation with feedback control},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {218-228},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     doi = {10.22436/jnsa.007.03.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.08/}
}
TY  - JOUR
AU  - Nasertayoob, Payam
AU  - Vaezpour, S. Mansour
TI  - Positive periodic solution for a nonlinear neutral delay population equation with feedback control
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 218
EP  - 228
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.08/
DO  - 10.22436/jnsa.007.03.08
LA  - en
ID  - JNSA_2014_7_3_a7
ER  - 
%0 Journal Article
%A Nasertayoob, Payam
%A Vaezpour, S. Mansour
%T Positive periodic solution for a nonlinear neutral delay population equation with feedback control
%J Journal of nonlinear sciences and its applications
%D 2014
%P 218-228
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.08/
%R 10.22436/jnsa.007.03.08
%G en
%F JNSA_2014_7_3_a7
Nasertayoob, Payam; Vaezpour, S. Mansour. Positive periodic solution for a nonlinear neutral delay population equation with feedback control. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 218-228. doi : 10.22436/jnsa.007.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.08/

[1] Anguraj, A.; Maheswari, M. Latha Existence of solutions for fractional impulsive neutral functional infinite delay integrodifferential equations with nonlocal conditions, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 271-280

[2] Cac, N. P.; Gatica, J. A. Fixed point theorems for mappings in ordered Banach spaces, J. Math. Anal. Appl., Volume 71 (1979), pp. 547-557

[3] Chen, F. D.; Sun, D. X.; J. L. Shi Periodicity in a food-limited population model with toxicants and state dependent delays, J. Math. Anal. Appl., Volume 288 (2003), pp. 132-142

[4] Chen, F. D. Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput., Volume 162 (2005), pp. 1279-1302

[5] Fan, M.; K. Wang Global periodic solutions of a generalized n-species Gilpin-Ayala competition model , Comput. Math. Appl., Volume 40 (2000), pp. 1141-1151

[6] Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht , 1992

[7] Guo, D. Nonlinear Functional Analysis, (in Chinese) Shandong Science and Technology Press, Jinan , 2001

[8] Khamsi, M.; Kirk, W. An Introduction to Metric Spaces and Fixed Point Theory , Wiley-IEEE, , 2001

[9] Li, T.; Thandapani, E. Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments, J. Nonlinear Sci. Appl., Volume 4 (2011), pp. 180-192

[10] Li, Y.; Liu, P.; Zhu, L. Positive periodic solutions of a class of functional differential systems with feedback controls, Nonlinear Anal., Volume 57 (2004), pp. 655-666

[11] Li, C. R.; Lu, S. J. The qualitative analysis of N-species periodic coefficient, nonlinear relation, prey-competition systems, Appl. Math. JCU, Volume 12 (1997), pp. 147-156

[12] Liu, B. Positive solutions of a nonlinear four-point boundary value problems in Banach spaces, J. Math. Anal. Appl., Volume 305 (2005), pp. 253-276

[13] Liu, G.; Yan, J. Positive Periodic Solution for a Neutral Different system with Feedback Control, Comput. Math. Appl. , Volume 52 (2006), pp. 401-410

[14] Lu, S.; Ge, W. Existance of positive periodic solution for neutral population model with multiple delays, Appl. Math. Comput., Volume 153 (2004), pp. 885-902

[15] G. Seifert On a delay-differential equation for single specie population variation, Nonlinear Anal. TMA, Volume 11 (1987), pp. 1051-1059

[16] Weng, P. X. Existence and global stability of positive periodic solution of periodic integro-differential systems with feedback controls, Comput. Math. Appl., Volume 40 (2000), pp. 747-759

[17] Xiaoxing, C. Almost periodic solution of nonlinear delay population equation with feedback control , Nonlineal Anal., Volume 8 (2007), pp. 62-72

[18] Yuan, R. The existence of almost periodic solution of a population equation with delay, Applicable Anal., Volume 61 (1999), pp. 45-52

Cité par Sources :