Voir la notice de l'article provenant de la source International Scientific Research Publications
Nasertayoob, Payam 1 ; Vaezpour, S. Mansour 1
@article{JNSA_2014_7_3_a7, author = {Nasertayoob, Payam and Vaezpour, S. Mansour}, title = {Positive periodic solution for a nonlinear neutral delay population equation with feedback control}, journal = {Journal of nonlinear sciences and its applications}, pages = {218-228}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2014}, doi = {10.22436/jnsa.007.03.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.08/} }
TY - JOUR AU - Nasertayoob, Payam AU - Vaezpour, S. Mansour TI - Positive periodic solution for a nonlinear neutral delay population equation with feedback control JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 218 EP - 228 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.08/ DO - 10.22436/jnsa.007.03.08 LA - en ID - JNSA_2014_7_3_a7 ER -
%0 Journal Article %A Nasertayoob, Payam %A Vaezpour, S. Mansour %T Positive periodic solution for a nonlinear neutral delay population equation with feedback control %J Journal of nonlinear sciences and its applications %D 2014 %P 218-228 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.08/ %R 10.22436/jnsa.007.03.08 %G en %F JNSA_2014_7_3_a7
Nasertayoob, Payam; Vaezpour, S. Mansour. Positive periodic solution for a nonlinear neutral delay population equation with feedback control. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 218-228. doi : 10.22436/jnsa.007.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.08/
[1] Existence of solutions for fractional impulsive neutral functional infinite delay integrodifferential equations with nonlocal conditions, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 271-280
[2] Fixed point theorems for mappings in ordered Banach spaces, J. Math. Anal. Appl., Volume 71 (1979), pp. 547-557
[3] Periodicity in a food-limited population model with toxicants and state dependent delays, J. Math. Anal. Appl., Volume 288 (2003), pp. 132-142
[4] Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput., Volume 162 (2005), pp. 1279-1302
[5] Global periodic solutions of a generalized n-species Gilpin-Ayala competition model , Comput. Math. Appl., Volume 40 (2000), pp. 1141-1151
[6] Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht , 1992
[7] Nonlinear Functional Analysis, (in Chinese) Shandong Science and Technology Press, Jinan , 2001
[8] An Introduction to Metric Spaces and Fixed Point Theory , Wiley-IEEE, , 2001
[9] Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments, J. Nonlinear Sci. Appl., Volume 4 (2011), pp. 180-192
[10] Positive periodic solutions of a class of functional differential systems with feedback controls, Nonlinear Anal., Volume 57 (2004), pp. 655-666
[11] The qualitative analysis of N-species periodic coefficient, nonlinear relation, prey-competition systems, Appl. Math. JCU, Volume 12 (1997), pp. 147-156
[12] Positive solutions of a nonlinear four-point boundary value problems in Banach spaces, J. Math. Anal. Appl., Volume 305 (2005), pp. 253-276
[13] Positive Periodic Solution for a Neutral Different system with Feedback Control, Comput. Math. Appl. , Volume 52 (2006), pp. 401-410
[14] Existance of positive periodic solution for neutral population model with multiple delays, Appl. Math. Comput., Volume 153 (2004), pp. 885-902
[15] On a delay-differential equation for single specie population variation, Nonlinear Anal. TMA, Volume 11 (1987), pp. 1051-1059
[16] Existence and global stability of positive periodic solution of periodic integro-differential systems with feedback controls, Comput. Math. Appl., Volume 40 (2000), pp. 747-759
[17] Almost periodic solution of nonlinear delay population equation with feedback control , Nonlineal Anal., Volume 8 (2007), pp. 62-72
[18] The existence of almost periodic solution of a population equation with delay, Applicable Anal., Volume 61 (1999), pp. 45-52
Cité par Sources :