Nonlinear conservation law model for production network considering yield loss
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 205-217.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A mathematical model describing yield loss in a production network has been introduced. Mathematical properties of the continuum model are discussed. Existence, uniqueness and stability of the solution are demonstrated through weak formulation and entropy criteria. Front tracking method is implemented to construct approximate solutions. Estimates of the solutions are also provided.
DOI : 10.22436/jnsa.007.03.07
Classification : 35L65, 35Q35, 97M10
Keywords: Production system, conservation laws, yield loss, front tracking.

Sarkar, Tanmay 1 ; Sundar, S. 1

1 Department of Mathematics, Indian Institute of Technology Madras, Chennai-600036, India
@article{JNSA_2014_7_3_a6,
     author = {Sarkar, Tanmay and Sundar, S.},
     title = {Nonlinear conservation law model for production network considering yield loss},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {205-217},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     doi = {10.22436/jnsa.007.03.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.07/}
}
TY  - JOUR
AU  - Sarkar, Tanmay
AU  - Sundar, S.
TI  - Nonlinear conservation law model for production network considering yield loss
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 205
EP  - 217
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.07/
DO  - 10.22436/jnsa.007.03.07
LA  - en
ID  - JNSA_2014_7_3_a6
ER  - 
%0 Journal Article
%A Sarkar, Tanmay
%A Sundar, S.
%T Nonlinear conservation law model for production network considering yield loss
%J Journal of nonlinear sciences and its applications
%D 2014
%P 205-217
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.07/
%R 10.22436/jnsa.007.03.07
%G en
%F JNSA_2014_7_3_a6
Sarkar, Tanmay; Sundar, S. Nonlinear conservation law model for production network considering yield loss. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 205-217. doi : 10.22436/jnsa.007.03.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.07/

[1] Armbruster, D.; Degond, P.; Ringhofer, C. A model for the dynamic of large queuing networks and supply chains, SIAM J. Appl. Math., Volume 66 (2006), pp. 896-920

[2] Bressan, A. Hyperbolic Systems of conservation Laws, Oxford University Press, Oxford, 2000

[3] Dafermos, C. M. Polygonal Approximations of Solutions of the Inital Value Problem for a Conservation Law, J. Math. Anal. Appl., Volume 38 (1972), pp. 33-41

[4] Dafermos, C. M. Generalized Characteristics and the Structure of Solutions of Hyperbolic Conservation Law, Indiana Univ. Math. J., Volume 26 (1977), pp. 1097-1119

[5] D’Apice, C.; Manzo, R. A Fluid Model for supply Chains, Netw. Heterog. Media, Volume 1 (2006), pp. 379-398

[6] D’Apice, C.; Göttlich, S.; Herty, M.; Piccoli, B. Modeling, Simulation and Optimization of Supply Chains, A continuous Approach, SIAM, 2010

[7] Göttlich, S.; Herty, M.; A. Klar Network models for supply chains , Comm. Math. Sci., Volume 3 (2005), pp. 545-559

[8] Göttlich, S.; Herty, M.; Klar, A. Modelling and optimization of supply chains on complex network, Comm. Math. Sci., Volume 4 (2006), pp. 315-330

[9] Herty, M.; Klar, A.; B. Piccoli Existence of solutions for Supply Chain Models based on Partial Differential Equations, SIAM J. Math. Anal., Volume 39 (2007), pp. 160-173

[10] Holden, H.; N. H. Risebro Front Tracking for hyperbolic Conservation Laws, Springer Verlag, New York, Berlin, Heidelberg, 2002

[11] Kan, Y.; Tang, T.; Teng, Z. On the Piecewise Smooth Solutions to non-homogeneous Scalar Conservation Laws, J. Differential Equations, Volume 175 (2001), pp. 27-50

[12] Kirchner, C.; Herty, M.; Göttlich, S.; Klar, A. Optimal Control for Continuous Supply Network Models, Netw. Heterog. Media, Volume 1 (2006), pp. 675-688

[13] Kruzhkov, S. N. First Order Quasilinear Equations in Several Independent Variables, Math. USSR-Sb., Volume 10 (1970), pp. 217-243

[14] LeVeque, R. J. Numerical Methods for Conservation Laws, Birkhäuser, , 2008

[15] Newell, G. F. A simplified theory of kinematic waves in highway traffic, Transportation Res., Volume 27B (1993), pp. 281-313

[16] Sarkar, T.; S. Sundar Conservation law model of serial supply chain network incorporating various velocity forms, Int. J. Appl. Math., Volume 26 (2013), pp. 363-378

[17] Sarkar, T.; Sundar, S. On existence and stability analysis of a nonlinear conservation law model appearing in production system, Nonlinear Stud., Volume 21 (2014), pp. 339-347

[18] Soliman, A. H.; Barakat, M. A. Uniformly normal structure and uniformly generalized Lipschitzian semigroups, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 379-388

[19] Sun, S.; Dong, M. Continuum modeling of Supply Chain networks using discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engg., Volume 197 (2008), pp. 1204-1218

Cité par Sources :