Voir la notice de l'article provenant de la source International Scientific Research Publications
Sarkar, Tanmay 1 ; Sundar, S. 1
@article{JNSA_2014_7_3_a6, author = {Sarkar, Tanmay and Sundar, S.}, title = {Nonlinear conservation law model for production network considering yield loss}, journal = {Journal of nonlinear sciences and its applications}, pages = {205-217}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2014}, doi = {10.22436/jnsa.007.03.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.07/} }
TY - JOUR AU - Sarkar, Tanmay AU - Sundar, S. TI - Nonlinear conservation law model for production network considering yield loss JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 205 EP - 217 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.07/ DO - 10.22436/jnsa.007.03.07 LA - en ID - JNSA_2014_7_3_a6 ER -
%0 Journal Article %A Sarkar, Tanmay %A Sundar, S. %T Nonlinear conservation law model for production network considering yield loss %J Journal of nonlinear sciences and its applications %D 2014 %P 205-217 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.07/ %R 10.22436/jnsa.007.03.07 %G en %F JNSA_2014_7_3_a6
Sarkar, Tanmay; Sundar, S. Nonlinear conservation law model for production network considering yield loss. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 205-217. doi : 10.22436/jnsa.007.03.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.07/
[1] A model for the dynamic of large queuing networks and supply chains, SIAM J. Appl. Math., Volume 66 (2006), pp. 896-920
[2] Hyperbolic Systems of conservation Laws, Oxford University Press, Oxford, 2000
[3] Polygonal Approximations of Solutions of the Inital Value Problem for a Conservation Law, J. Math. Anal. Appl., Volume 38 (1972), pp. 33-41
[4] Generalized Characteristics and the Structure of Solutions of Hyperbolic Conservation Law, Indiana Univ. Math. J., Volume 26 (1977), pp. 1097-1119
[5] A Fluid Model for supply Chains, Netw. Heterog. Media, Volume 1 (2006), pp. 379-398
[6] Modeling, Simulation and Optimization of Supply Chains, A continuous Approach, SIAM, 2010
[7] Network models for supply chains , Comm. Math. Sci., Volume 3 (2005), pp. 545-559
[8] Modelling and optimization of supply chains on complex network, Comm. Math. Sci., Volume 4 (2006), pp. 315-330
[9] Existence of solutions for Supply Chain Models based on Partial Differential Equations, SIAM J. Math. Anal., Volume 39 (2007), pp. 160-173
[10] Front Tracking for hyperbolic Conservation Laws, Springer Verlag, New York, Berlin, Heidelberg, 2002
[11] On the Piecewise Smooth Solutions to non-homogeneous Scalar Conservation Laws, J. Differential Equations, Volume 175 (2001), pp. 27-50
[12] Optimal Control for Continuous Supply Network Models, Netw. Heterog. Media, Volume 1 (2006), pp. 675-688
[13] First Order Quasilinear Equations in Several Independent Variables, Math. USSR-Sb., Volume 10 (1970), pp. 217-243
[14] Numerical Methods for Conservation Laws, Birkhäuser, , 2008
[15] A simplified theory of kinematic waves in highway traffic, Transportation Res., Volume 27B (1993), pp. 281-313
[16] Conservation law model of serial supply chain network incorporating various velocity forms, Int. J. Appl. Math., Volume 26 (2013), pp. 363-378
[17] On existence and stability analysis of a nonlinear conservation law model appearing in production system, Nonlinear Stud., Volume 21 (2014), pp. 339-347
[18] Uniformly normal structure and uniformly generalized Lipschitzian semigroups, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 379-388
[19] Continuum modeling of Supply Chain networks using discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engg., Volume 197 (2008), pp. 1204-1218
Cité par Sources :