A fixed point theorem for ($\varphi,L$)-weak contraction mappings on a partial metric space
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 196-204.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we explore ($\varphi,L$)-weak contractions of Berinde by obtaining Suzuki-type fixed point results. Thus, we obtain generalized fixed point results for Kannan's, Chatterjea's and Zamfirescu's mappings on a 0-complete partial metric space. In this way we obtain very general fixed point theorems that extend and generalize several related results from the literature.
DOI : 10.22436/jnsa.007.03.06
Classification : 47H10, 54H25
Keywords: (\(\varphi, L\))-weak contraction, partial metric, 0-complete space

Erduran, Ali 1 ; Kadelburg, Z. 2 ; Nashine, H. K. 3 ; Vetro, C. 4

1 Department of Mathematics, Faculty of Arts and Sciences, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey
2 Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Beograd, Serbia
3 Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg, Naradha, Mandir Hasaud, Raipur-492101 (Chhattisgarh), India
4 Dipartimento di Matematica e Informatica, Universita degli Studi di Palermo, Via Archirafi 34, 90123 Palermo, Italy
@article{JNSA_2014_7_3_a5,
     author = {Erduran, Ali and Kadelburg, Z. and Nashine, H. K. and Vetro, C.},
     title = {A fixed point theorem for {(\(\varphi,L\))-weak} contraction mappings on a partial metric space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {196-204},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     doi = {10.22436/jnsa.007.03.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.06/}
}
TY  - JOUR
AU  - Erduran, Ali
AU  - Kadelburg, Z.
AU  - Nashine, H. K.
AU  - Vetro, C.
TI  - A fixed point theorem for (\(\varphi,L\))-weak contraction mappings on a partial metric space
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 196
EP  - 204
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.06/
DO  - 10.22436/jnsa.007.03.06
LA  - en
ID  - JNSA_2014_7_3_a5
ER  - 
%0 Journal Article
%A Erduran, Ali
%A Kadelburg, Z.
%A Nashine, H. K.
%A Vetro, C.
%T A fixed point theorem for (\(\varphi,L\))-weak contraction mappings on a partial metric space
%J Journal of nonlinear sciences and its applications
%D 2014
%P 196-204
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.06/
%R 10.22436/jnsa.007.03.06
%G en
%F JNSA_2014_7_3_a5
Erduran, Ali; Kadelburg, Z.; Nashine, H. K.; Vetro, C. A fixed point theorem for (\(\varphi,L\))-weak contraction mappings on a partial metric space. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 196-204. doi : 10.22436/jnsa.007.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.06/

[1] Abbas, M.; Vetro, P.; Khan, S. H. On fixed points of Berinde's contractive mappings in cone metric spaces, Carpathian J. Math., Volume 26 (2010), pp. 121-133

[2] Abdeljawad, T.; Karapinar, E.; Taş, K. Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1900-1904

[3] Altun, I.; Acar, Ö. Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl., Volume 159 (2012), pp. 2642-2648

[4] Altun, I.; Erduran, A. Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-10

[5] Altun, I.; Sola, F.; H. Simsek Generalized contractions on partial metric spaces, Topology Appl., Volume 157 (2010), pp. 2778-2785

[6] Altun, I.; Erduran, A. A Suzuki type fixed-point theorem, Intern. J. Math. Math. Sci., Volume 2011 (2011), pp. 1-9

[7] Babu, G. V. R.; Sandhya, M. L.; Kameswari, M. V. R. A note on fixed point theorem of Berinde on weak contractions, Carpathian J. Math., Volume 24 (2008), pp. 8-12

[8] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund Math., Volume 3 (1922), pp. 133-181

[9] Berinde, V. Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, Volume 9 (2004), pp. 43-53

[10] Berinde, V. On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., Volume 19 (2003), pp. 7-22

[11] Berinde, V. Iterative Approximation of Fixed Points, Springer-Verlag, Berlin-Heidelberg, 2007

[12] Berinde, V. Approximating fixed points of weak \(\varphi\)-contractions using the Picard iteration, Fixed Point Theory, Volume 4 (2003), pp. 131-142

[13] Berinde, V. General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces, Carpathian J. Math., Volume 24 (2008), pp. 10-19

[14] Berinde, V. Approximating common fixed points of noncommuting discontinuous weakly contractive mappings in metric spaces, Carpathian J. Math., Volume 25 (2009), pp. 13-22

[15] Berinde, V. Some remarks on a fixed point theorem for Ćirić-type almost contractions, Carpathian J. Math., Volume 25 (2009), pp. 157-162

[16] Berinde, V. Approximating common fixed points of noncommuting almost contractions in metric spaces, Fixed Point Theory, Volume 11:2 (2010), pp. 179-188

[17] Berinde, V. Common fixed points of noncommuting almost contractions in cone metric spaces, Math. Commun, Volume 15 (2010), pp. 229-241

[18] Berinde, V. Common fixed points of noncommuting discontinuous weakly contractive mappings in cone metric spaces , Taiwanese J. Math., Volume 14:5 (2010), pp. 1763-1776

[19] Berinde, V.; Păcurar, M. Fixed points and continuity of almost contractions, Fixed Point Theory, Volume 9 (2008), pp. 23-34

[20] Dorić, D.; Kadelburg, Z.; S. Radenović Edelstein-Suzuki-type fixed point results in metric and abstract metric spaces, Nonlinear Anal., Volume 75 (2012), pp. 1927-1932

[21] Enjouji, Y.; Nakanishi, M.; T. Suzuki A generalization of Kannan's fixed point theorem, Fixed Point Theory Appl., Volume 2009 (2009), pp. 1-10

[22] Hussain, N.; Dorić, D.; Kadelburg, Z.; Radenović, S. Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12

[23] Imdad, M.; Erduran, A. Suzuki-Type Generalization of Chatterjea Contraction Mappings on Complete Partial Metric Spaces, Journal of Operators, Volume 2013 (2013), pp. 1-5

[24] Kaewcharoen, A.; Yuying, T. Unique common fixed point theorems on partial metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 90-101

[25] Karapinar, E.; I. M. Erhan Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1894-1899

[26] Kikkawa, M.; Suzuki, T. Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl., Volume 2008 (2008), pp. 1-8

[27] Kikkawa, M.; T. Suzuki Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. , Volume 69 (2008), pp. 2942-2949

[28] Kirk, W. A. Caristi's fixed point theorem and metric convexity, Colloq. Math., Volume 36 (1976), pp. 81-86

[29] Rosa, V. La; Vetro, P. Fixed points for Geraghty-contractions in partial metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 1-10

[30] J. Matkowski Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., Volume 62 (1977), pp. 344-348

[31] S. G. Matthews Partial metric topology, In: Procedings 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci, Volume 728 (1994), pp. 183-197

[32] Nakanishi, M.; T. Suzuki An observation on Kannan mappings, Cent. Eur. J. Math., Volume 8 (2009), pp. 170-178

[33] Nashine, H. K.; Kadelburg, Z.; Radenović, S.; Kim, J. K. Fixed point theorems under Hardy-Rogers weak contractive conditions on 0-complete ordered partial metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-15

[34] Parvaneh, V.; Salimi, P.; Vetro, P.; Nezhad, A. Dehghan; Radenovic, S. Fixed point results for \(GP_{(\Lambda,\Theta)}\)-contractive mappings, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 150-159

[35] Popescu, O. Fixed point theorem in metric spaces, Bull. Transilv. Univ. Brasov, Ser. III, Volume 50 (2008), pp. 479-482

[36] O. Popescu Two fixed point theorems for generalized conractions with constants in complete metric space, Cent. Eur. J. Math., Volume 7 (2009), pp. 529-538

[37] Popescu, O. A new type of contractive multivalued operators, Bull. Sci. Math., Volume 137 (2013), pp. 30-44

[38] Paesano, D.; P. Vetro Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., Volume 159 (2012), pp. 911-920

[39] Romaguera, S. A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-6

[40] Subrahmanyam, P. V. Completeness and fixed-points, Monatsh. Math., Volume 80 (1975), pp. 325-330

[41] T. Suzuki A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 1861-1869

[42] Suzuki, T.; W. Takahashi Fixed point theorems and characterizations of metric completeness, Top. Methods Nonlinear Anal., Volume 8 (1996), pp. 371-382

[43] Suzuki, T. Fixed point theorems for Berinde mappings, Bull. Kyushu Inst. Technol. Pure Appl. Math., Volume 58 (2011), pp. 13-19

Cité par Sources :