Voir la notice de l'article provenant de la source International Scientific Research Publications
Erduran, Ali 1 ; Kadelburg, Z. 2 ; Nashine, H. K. 3 ; Vetro, C. 4
@article{JNSA_2014_7_3_a5, author = {Erduran, Ali and Kadelburg, Z. and Nashine, H. K. and Vetro, C.}, title = {A fixed point theorem for {(\(\varphi,L\))-weak} contraction mappings on a partial metric space}, journal = {Journal of nonlinear sciences and its applications}, pages = {196-204}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2014}, doi = {10.22436/jnsa.007.03.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.06/} }
TY - JOUR AU - Erduran, Ali AU - Kadelburg, Z. AU - Nashine, H. K. AU - Vetro, C. TI - A fixed point theorem for (\(\varphi,L\))-weak contraction mappings on a partial metric space JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 196 EP - 204 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.06/ DO - 10.22436/jnsa.007.03.06 LA - en ID - JNSA_2014_7_3_a5 ER -
%0 Journal Article %A Erduran, Ali %A Kadelburg, Z. %A Nashine, H. K. %A Vetro, C. %T A fixed point theorem for (\(\varphi,L\))-weak contraction mappings on a partial metric space %J Journal of nonlinear sciences and its applications %D 2014 %P 196-204 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.06/ %R 10.22436/jnsa.007.03.06 %G en %F JNSA_2014_7_3_a5
Erduran, Ali; Kadelburg, Z.; Nashine, H. K.; Vetro, C. A fixed point theorem for (\(\varphi,L\))-weak contraction mappings on a partial metric space. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 196-204. doi : 10.22436/jnsa.007.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.06/
[1] On fixed points of Berinde's contractive mappings in cone metric spaces, Carpathian J. Math., Volume 26 (2010), pp. 121-133
[2] Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1900-1904
[3] Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl., Volume 159 (2012), pp. 2642-2648
[4] Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-10
[5] Generalized contractions on partial metric spaces, Topology Appl., Volume 157 (2010), pp. 2778-2785
[6] A Suzuki type fixed-point theorem, Intern. J. Math. Math. Sci., Volume 2011 (2011), pp. 1-9
[7] A note on fixed point theorem of Berinde on weak contractions, Carpathian J. Math., Volume 24 (2008), pp. 8-12
[8] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund Math., Volume 3 (1922), pp. 133-181
[9] Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, Volume 9 (2004), pp. 43-53
[10] On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., Volume 19 (2003), pp. 7-22
[11] Iterative Approximation of Fixed Points, Springer-Verlag, Berlin-Heidelberg, 2007
[12] Approximating fixed points of weak \(\varphi\)-contractions using the Picard iteration, Fixed Point Theory, Volume 4 (2003), pp. 131-142
[13] General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces, Carpathian J. Math., Volume 24 (2008), pp. 10-19
[14] Approximating common fixed points of noncommuting discontinuous weakly contractive mappings in metric spaces, Carpathian J. Math., Volume 25 (2009), pp. 13-22
[15] Some remarks on a fixed point theorem for Ćirić-type almost contractions, Carpathian J. Math., Volume 25 (2009), pp. 157-162
[16] Approximating common fixed points of noncommuting almost contractions in metric spaces, Fixed Point Theory, Volume 11:2 (2010), pp. 179-188
[17] Common fixed points of noncommuting almost contractions in cone metric spaces, Math. Commun, Volume 15 (2010), pp. 229-241
[18] Common fixed points of noncommuting discontinuous weakly contractive mappings in cone metric spaces , Taiwanese J. Math., Volume 14:5 (2010), pp. 1763-1776
[19] Fixed points and continuity of almost contractions, Fixed Point Theory, Volume 9 (2008), pp. 23-34
[20] Edelstein-Suzuki-type fixed point results in metric and abstract metric spaces, Nonlinear Anal., Volume 75 (2012), pp. 1927-1932
[21] A generalization of Kannan's fixed point theorem, Fixed Point Theory Appl., Volume 2009 (2009), pp. 1-10
[22] Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12
[23] Suzuki-Type Generalization of Chatterjea Contraction Mappings on Complete Partial Metric Spaces, Journal of Operators, Volume 2013 (2013), pp. 1-5
[24] Unique common fixed point theorems on partial metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 90-101
[25] Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1894-1899
[26] Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl., Volume 2008 (2008), pp. 1-8
[27] Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. , Volume 69 (2008), pp. 2942-2949
[28] Caristi's fixed point theorem and metric convexity, Colloq. Math., Volume 36 (1976), pp. 81-86
[29] Fixed points for Geraghty-contractions in partial metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 1-10
[30] Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., Volume 62 (1977), pp. 344-348
[31] Partial metric topology, In: Procedings 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci, Volume 728 (1994), pp. 183-197
[32] An observation on Kannan mappings, Cent. Eur. J. Math., Volume 8 (2009), pp. 170-178
[33] Fixed point theorems under Hardy-Rogers weak contractive conditions on 0-complete ordered partial metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-15
[34] Fixed point results for \(GP_{(\Lambda,\Theta)}\)-contractive mappings, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 150-159
[35] Fixed point theorem in metric spaces, Bull. Transilv. Univ. Brasov, Ser. III, Volume 50 (2008), pp. 479-482
[36] Two fixed point theorems for generalized conractions with constants in complete metric space, Cent. Eur. J. Math., Volume 7 (2009), pp. 529-538
[37] A new type of contractive multivalued operators, Bull. Sci. Math., Volume 137 (2013), pp. 30-44
[38] Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., Volume 159 (2012), pp. 911-920
[39] A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-6
[40] Completeness and fixed-points, Monatsh. Math., Volume 80 (1975), pp. 325-330
[41] A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 1861-1869
[42] Fixed point theorems and characterizations of metric completeness, Top. Methods Nonlinear Anal., Volume 8 (1996), pp. 371-382
[43] Fixed point theorems for Berinde mappings, Bull. Kyushu Inst. Technol. Pure Appl. Math., Volume 58 (2011), pp. 13-19
Cité par Sources :