Modeling the treatment of tumor cells in a solid tumor
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 188-195.

Voir la notice de l'article provenant de la source International Scientific Research Publications

It is well known that the theory of differential equations and some software packages are important tools for solving several actual problems from different real world domains. The novelty of this paper is the fact that the mathematical model of evolution of leukemic cells is adapted to the case of tumor cells, from a solid tumor, together with the treatment of the solid homogeneous tumor. Using the paper Dingli and Michor [D. Dingli, F. Michor, STEM-CELLS, 24 (2006), 2603-2610], we consider the model of evolution of a leukemic population for the case of solid tumors.
DOI : 10.22436/jnsa.007.03.05
Classification : 92B05, 34C60, 34A12
Keywords: Cauchy problem, mathematical model, solid tumor, tumor cells, system of differential equations.

Parajdi, Lorand 1

1 Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania
@article{JNSA_2014_7_3_a4,
     author = {Parajdi, Lorand},
     title = {Modeling the treatment of tumor cells in a solid tumor},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {188-195},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     doi = {10.22436/jnsa.007.03.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.05/}
}
TY  - JOUR
AU  - Parajdi, Lorand
TI  - Modeling the treatment of tumor cells in a solid tumor
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 188
EP  - 195
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.05/
DO  - 10.22436/jnsa.007.03.05
LA  - en
ID  - JNSA_2014_7_3_a4
ER  - 
%0 Journal Article
%A Parajdi, Lorand
%T Modeling the treatment of tumor cells in a solid tumor
%J Journal of nonlinear sciences and its applications
%D 2014
%P 188-195
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.05/
%R 10.22436/jnsa.007.03.05
%G en
%F JNSA_2014_7_3_a4
Parajdi, Lorand. Modeling the treatment of tumor cells in a solid tumor. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 188-195. doi : 10.22436/jnsa.007.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.05/

[1] Arghirescu, S.; Cucuianu, A.; Precup, R.; Şerban, M. Mathematical Modeling of Cell Dynamics after Allogeneic Bone Marrow Transplantation in Acute Myeloid Leukemia , Int. J. Biomath., Volume 5 (2012), pp. 1-18

[2] Cucuianu, A.; Precup, R.; A Hypothetical-Mathematical Model of Acute Myeloid Leukaemia Pathogenesis , Comput. Math. Methods Med., Volume 11 (2010), pp. 49-65

[3] Dingli, D.; F. Michor Successful Therapy Must Eradicate Cancer Stem Cells, STEM-CELLS, Volume 24 (2006), pp. 2603-2610

[4] Guckenheimer, J.; Holmes, P. Nonlineat Oscillations, Dynamical Systems, and Bifurcation of Vector Fields , Springer-Verlag, , 1983

[5] Iancu, C.; Rus, I. A. Mathematical Modeling, Transilvania Press, Cluj-Napoca, 1996

[6] Lynch, S. Dynamical Systems with Applications using Maple, second edition, Birkhäuser , Boston, 2009

[7] L. Preziosi Cancer modelling and simulation, Ed. Chapman & Hall/CRC, , 2003

[8] Precup, R.; Şerban, M. A.; D. Trif Asymptotic stability for cell dynamics after bone marrow transplantation, The 8th Joint Conference on Mathematics and Computer Science, Komarno, Slovakia, (2010), pp. 1-11

[9] Shonkwiler, R. W.; Herod, J. Mathematical Biology, Ed. Springer, , 2009

[10] Z. Zeng Scientific Computing with Maple Programming, , , 2001

Cité par Sources :