Modified Noor iterations with errors for nonlinear equations in Banach spaces
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 180-187.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We introduce a new three step iterative scheme with errors to approximate the unique common fixed point of a family of three strongly pseudocontractive (accretive) mappings on Banach spaces. Our results are generalizations and improvements of results obtained by several authors in literature. In particular, they generalize and improve the results of Mogbademu and Olaleru [A. A. Mogbademu and J. O. Olaleru, Bull. Math. Anal. Appl., 3 (2011), 132-139], Xue and Fan [Z. Xue and R. Fan, Appl. Math. Comput., 206 (2008), 12-15] which is in turn a correction of Rafiq [A. Rafiq, Appl. Math. Comput., 182 (2006), 589-595].
DOI : 10.22436/jnsa.007.03.04
Classification : 47H10, 54H25
Keywords: Three-step iterative scheme with errors, Banach spaces, strongly pseudocontractive operators, unique common fixed point, strongly accretive.

Okeke, G. A. 1 ; Olaleru, J. O. 1

1 Department of Mathematics, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos, Nigeria
@article{JNSA_2014_7_3_a3,
     author = {Okeke, G. A. and Olaleru, J. O.},
     title = {Modified {Noor} iterations with errors for nonlinear equations in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {180-187},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     doi = {10.22436/jnsa.007.03.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.04/}
}
TY  - JOUR
AU  - Okeke, G. A.
AU  - Olaleru, J. O.
TI  - Modified Noor iterations with errors for nonlinear equations in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 180
EP  - 187
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.04/
DO  - 10.22436/jnsa.007.03.04
LA  - en
ID  - JNSA_2014_7_3_a3
ER  - 
%0 Journal Article
%A Okeke, G. A.
%A Olaleru, J. O.
%T Modified Noor iterations with errors for nonlinear equations in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2014
%P 180-187
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.04/
%R 10.22436/jnsa.007.03.04
%G en
%F JNSA_2014_7_3_a3
Okeke, G. A.; Olaleru, J. O. Modified Noor iterations with errors for nonlinear equations in Banach spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 180-187. doi : 10.22436/jnsa.007.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.04/

[1] Browder, F. E. Nonlinear mappings of nonexpansive and accretive in Banach space, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 875-882

[2] Chang, S. S.; Cho, Y. J.; Lee, B. S.; S. H. Kang Iterative approximation of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces, J. Math. Anal. Appl., Volume 224 (1998), pp. 165-194

[3] Ćirić, L. J.; Ume, J. S. Ishikawa iteration process for strongly pseudocontractive operator in arbitrary Banach space, Commun, Volume 8 (2003), pp. 43-48

[4] Glowinski, R.; Le-Tallec, P. Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM, Philadelphia, 1989

[5] Haubruge, S.; Nguyen, V. H.; J. J. Strodiot Convergence analysis and applications of the Glowinski-Le-Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. , Volume 97 (1998), pp. 645-673

[6] S. Ishikawa Fixed points by a new iteration method , Proc. Amer. Math. Soc., Volume 44 (1974), pp. 147-150

[7] Jain, S.; Jain, S.; L. B. Jain On Banach contraction principle in a cone metric space , Journal of Nonlinear Science and Applications, Volume 5 (2012), pp. 252-258

[8] T. Kato Nonlinear semigroup and evolution equations, J. Math. Soc. Jpn., Volume 19 (1967), pp. 508-520

[9] Liu, L. S. Fixed points of local strictly pseudo-contractive mappings using Mann and Ishikawa iterations with errors, Indian J. Pure Appl. Math., Volume 26 (1995), pp. 649-659

[10] Mann, W. R. Mean Value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510

[11] Mogbademu, A. A.; Olaleru, J. O. Modifed Noor iterative methods for a family of strongly pseudocontractive maps, Bulletin of Mathematical Analysis and Applications , Volume 3 (2011), pp. 132-139

[12] Morales, C. H.; Jung, J. J. Convergence of path for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc., Volume 120 (2000), pp. 3411-3419

[13] Nashine, H. K.; Imdad, M.; Hasan, M. Common fixed point theorems under rational contractions in complex valued metric spaces, Journal of Nonlinear Science and Applications, Volume 7 (2014), pp. 42-50

[14] Noor, M. A. New approximation schemes for general variational inequalities, J. Math. Anal. Appl., Volume 251 (2000), pp. 217-229

[15] M. A. Noor Three-step iterative algorithms for multi-valued quasi variational inclusions, J. Math. Anal. Appl., Volume 255 (2001), pp. 589-604

[16] Noor, M. A. Some developments in general variational inequalities, Appl. Math. Computation, Volume 152 (2004), pp. 199-277

[17] Noor, M. A.; Rassias, T. M.; Huang, Z. Y. Three-step iterations for nonlinear accretive operator equations, J. Math. Anal. Appl., Volume 274 (2002), pp. 59-68

[18] Olaleru, J. O.; Mogbademu, A. A. On modified Noor iteration scheme for non-linear maps, Acta Math. Univ. Comenianae, Volume 2 (2011), pp. 221-228

[19] Olaleru, J. O.; Okeke, G. A. Convergence theorems on asymptotically demicontractive and hemicontractive mappings in the intermediate sense, Fixed Point Theory and Applications, Volume 2013 (2013), pp. 1-352

[20] A. Rafiq Modified Noor iterations for nonlinear equations in Banach spaces, Applied Mathematics and Computation, Volume 182 (2006), pp. 589-595

[21] Saluja, G. S. Convergence of implicit random iteration process with errors for a finite family of asymptotically quasi-nonexpansive random operators, J. Nonlinear Sci. Appl., Volume 4 (2011), pp. 292-307

[22] S. Suantai Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., Volume 311 (2005), pp. 506-517

[23] Weng, X. Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc., Volume 113 (1991), pp. 727-731

[24] Xu, Y. G. Ishikawa and Mann iterative process with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl., Volume 224 (1998), pp. 91-101

[25] Xue, Z.; Fan, R. Some comments on Noor's iterations in Banach spaces, Applied Mathematics and Computation, Volume 206 (2008), pp. 12-15

[26] Zazimierski, K. S. Adaptive Mann iterative for nonlinear accretive and pseudocontractive operator equations, Math. Commun., Volume 13 (2008), pp. 33-44

[27] Zhou, H. Y.; Jia, Y. Approximation of fixed points of strongly pseudocontractive maps without Lipschitz assumptions, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 1705-1709

Cité par Sources :