$\alpha-\psi-\varphi$-contractive mappings in ordered partial b-metric spaces
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 168-179.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce the concept of $\alpha-\psi-\varphi$-contractive self mapping in complete ordered partial b- metric space, and we study the existence of fixed points for such mappings under some conditions. Presented theorems in this paper extend and generalize the results derived by Mustafa et al., also some examples are given to illustrate the main results.
DOI : 10.22436/jnsa.007.03.03
Classification : 47H10, 54H25
Keywords: b-metric space, fixed point theory, contraction, partial metric space.

Mukheimer, Aiman 1

1 Department of Mathematics and General Sciences, Prince Sultan University, P.O.Box 66833, Riyadh 11586, Saudi Arabia
@article{JNSA_2014_7_3_a2,
     author = {Mukheimer, Aiman},
     title = {\(\alpha-\psi-\varphi\)-contractive mappings in ordered partial b-metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {168-179},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     doi = {10.22436/jnsa.007.03.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.03/}
}
TY  - JOUR
AU  - Mukheimer, Aiman
TI  - \(\alpha-\psi-\varphi\)-contractive mappings in ordered partial b-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 168
EP  - 179
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.03/
DO  - 10.22436/jnsa.007.03.03
LA  - en
ID  - JNSA_2014_7_3_a2
ER  - 
%0 Journal Article
%A Mukheimer, Aiman
%T \(\alpha-\psi-\varphi\)-contractive mappings in ordered partial b-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2014
%P 168-179
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.03/
%R 10.22436/jnsa.007.03.03
%G en
%F JNSA_2014_7_3_a2
Mukheimer, Aiman. \(\alpha-\psi-\varphi\)-contractive mappings in ordered partial b-metric spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 168-179. doi : 10.22436/jnsa.007.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.03/

[1] Abdeljawad, T.; Alzabut, J.; Mukheimer, A.; Zaidan, Y. Banach contraction principle for cyclical mappings on partial metric spaces , Fixed Point Theory and Applications, Volume 2012:154 (2012), pp. 1-7

[2] Abdeljawad, T.; Alzabut, J.; Mukheimer, A.; Zaidan, Y. Best Proximity Points For Cyclical Contraction Mappings With 0-Boundedly Compact Decompositions, Journal of Computational Analysis and Applications, Volume 15 (2013), pp. 678-685

[3] Abdeljawad, T. Meir-Keeler \(\alpha\)-contractive fixed and common fixed point theorems, Fixed Point Theory and Applications, Volume 2013:19 (2013), pp. 1-10

[4] Asl, J.; Rezapour, S.; Shahzad, N. On fixed points of \(\alpha-\psi\)-contractive multi functions, Fixed Point Theory and Applications, Volume 2012:212 (2012), pp. 1-6

[5] H. Aydi Some fixed point results in ordered partial metric spaces, Journal of Nonlinear Sciences and Applications, Volume 3 (2011), pp. 210-217

[6] Aydi, H.; Bota, M.; Karapinar, E.; S. Mitrovic A fixed point theorem for set valued quasi-contractions in b-metric spaces, Fixed Point Theory and its Applications, Volume 2012:88 (2012), pp. 1-8

[7] I. A. Bakhtin The contraction principle in quasimetric spaces, It. Funct. Anal., Volume 30 (1989), pp. 26-37

[8] Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundamenta Mathematicae, Volume 3 (1922), pp. 133-181

[9] Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, Volume 46 (1998), pp. 263-276

[10] S. Czerwik Contraction mappings in b-metric spaces, Acta Math. inform. Univ. Osrav, Volume 1 (1993), pp. 5-11

[11] Karapinar, E.; R. P. Agarwal A note on Coupled fixed point theorems for \(\alpha-\psi\)-contractive-type mappings in partially ordered metric spaces, Fixed Point Theory and Applications, Volume 2013:216 (2013), pp. 1-16

[12] Kaewcharoen, A.; Yuying, T. Unique common fixed point theorems on partial metric spaces, Journal of Nonlinear Sciences and Applications, Volume 7 (2014), pp. 90-101

[13] Karapinar, E.; Samet, B. Generalized \(\alpha-\psi\) contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, Art. ID 793486, Volume 2012 (2012), pp. 1-17

[14] Khan, M.; Swaleh, M.; S. Sessa Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., Volume 30 (1984), pp. 1-9

[15] S. G. Matthews Partal metric topology , Proc. 8th Summer Conference on General Topology and Applications, Ann. N.Y. Acad. Sci., Volume 728 (1994), pp. 183-197

[16] Mehmet, K.; Kiziltunc, H. On Some Well Known Fixed Point Theorems in b-Metric Spaces, Turkish Journal of Analysis and Number Theory, Volume 1 (2013), pp. 13-16

[17] Mustafa, Z.; Roshan, J. R.; Parvaneh, V.; Kadelburg, Z. Some common fixed point result in ordered partal b-metric spaces, Journal of Inequalities and Applications, Volume 2013 (2013), pp. 1-562

[18] Nashinea, H.; Imdadb, M.; Hasanc, M. Common fixed point theorems under rational contractions in complex valued metric spaces, Journal of Nonlinear Sciences and Applications, Volume 7 (2014), pp. 42-50

[19] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for \(\alpha-\psi\) -contactive type mappings, Nonlinear Analysis, Volume 75 (2012), pp. 2154-2165

[20] Shatanawia, W.; Nashineb, H. A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, Journal of Nonlinear Sciences and Applications, Volume 5 (2012), pp. 37-43

[21] Shukla, S. Partial b-metric spaces and fixed point theorems, Mediterranean Journal of Mathematics, doi:10.1007/s00009-013-0327-4, 2013

[22] Singh, S.; Chamola, B. Quasi-contractions and approximate fixed points, J. Natur. Phys. Sci., Volume 16 (2002), pp. 105-107

[23] Vetroa, C.; F. Vetrob Common fixed points of mappings satisfying implicit relations in partial metric spaces, Journal of Nonlinear Sciences and Applications, Volume 6 (2013), pp. 152-161

[24] H. Yingtaweesittikul Suzuki type fixed point for generalized multi-valued mappings in b-metric spaces, Fixed Point Theory and Applications, Volume 2013:215 (2013), pp. 1-9

Cité par Sources :