Bifurcation in a variational problem on a surface with a distance constraint
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 160-167.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We describe a variational problem on a surface of a Euclidean space under a distance constraint. We provide sufficient and necessary conditions for the existence of bifurcation points, generalizing Skrypnik's analog described in [P. Vyridis, Int. J. Nonlinear Anal. Appl. 2 (2011), 1-10]. The problem in local coordinates corresponds to an elliptic boundary value problem.
DOI : 10.22436/jnsa.007.03.02
Classification : 58E30, 58E07, 58E10.
Keywords: Calculus of Variations, Critical points, Bifurcation points, Distance function, Curvatures of a Surface, Boundary value problem for an elliptic PDE.

Vyridis, Panayotis 1

1 Department of Physics and Mathematics, National Polytechnical Institute (I.P.N.), Campus Zacatecas (U.P.I.I.Z.), Zacatecas, Mexico
@article{JNSA_2014_7_3_a1,
     author = {Vyridis, Panayotis},
     title = {Bifurcation in a variational problem on a surface with a distance constraint},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {160-167},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     doi = {10.22436/jnsa.007.03.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.02/}
}
TY  - JOUR
AU  - Vyridis, Panayotis
TI  - Bifurcation in a variational problem on a surface with a distance constraint
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 160
EP  - 167
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.02/
DO  - 10.22436/jnsa.007.03.02
LA  - en
ID  - JNSA_2014_7_3_a1
ER  - 
%0 Journal Article
%A Vyridis, Panayotis
%T Bifurcation in a variational problem on a surface with a distance constraint
%J Journal of nonlinear sciences and its applications
%D 2014
%P 160-167
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.02/
%R 10.22436/jnsa.007.03.02
%G en
%F JNSA_2014_7_3_a1
Vyridis, Panayotis. Bifurcation in a variational problem on a surface with a distance constraint. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 160-167. doi : 10.22436/jnsa.007.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.02/

[1] Cartan, H. Differential Calculus - Differential Forms, Herman Paris, , 1971

[2] Dubrovin, B. A.; Fomenko, A. T.; Novikov, S. P. Modern Geometry - Methods and Applications, Part II, Springer- Verlag , New York Inc., 1990

[3] Giusti, E. Minimal Surfaces and Functions of Bounded Variation , Monographs in Mathematics, Vol. 80 Birkhäuser, Boston-Basel-Stuttgart , 1984

[4] V. G. Osmolovskii Linear and nonlinear perturbations of operator div, Translations of Mathematical Monographs, Vol. 160, 1997

[5] Skrypnik, I. V. Nonlinear Partial Differential Equations of Higher Order, Kiev , , 1973

[6] P. Vyridis Bifurcation in a Variational Problem on a Surface with a Constraint, Int. J. Nonlinear Anal. Appl., Volume 2 (2011), pp. 1-10

[7] Vyridis, P. Free and Constrained Equilibrium States in a Variational Problem on a Surface , , , to appear

Cité par Sources :