Fixed point results for $GP_{(\Lambda,\Theta)}$-contractive mappings
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 150-159.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce new notions of $GP$-metric space and $GP_{(\Lambda,\Theta)}$-contractive mapping and then prove some fixed point theorems for this class of mappings. Our results extend and generalized Banach contraction principle to $GP$-metric spaces. An example shows the usefulness of our results.
DOI : 10.22436/jnsa.007.03.01
Classification : 47H10, 54H25, 55M20
Keywords: \(GP\)-metric spaces, \(GP_(\Lambda, \Theta)\)-contractive mappings, \(O-GP\)-continuous.

Parvaneh, Vahid 1 ; Salimi, Peyman 2 ; Vetro, Pasquale 3 ; Nezhad, Akbar Dehghan 4 ; Radenović, Stojan 5

1 Department of Mathematics, College of Science, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran
2 Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran
3 Dipartimento di Matematica e Informatica, Universita degli Studi di Palermo, via Archira 34, 90123 Palermo, Italy
4 Department of Mathematics, Yazd University, Yazd, Iran
5 Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Beograd, Serbia
@article{JNSA_2014_7_3_a0,
     author = {Parvaneh, Vahid and Salimi, Peyman and Vetro, Pasquale and Nezhad, Akbar Dehghan and Radenovi\'c, Stojan},
     title = {Fixed point results for  {\(GP_{(\Lambda,\Theta)}\)-contractive} mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {150-159},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2014},
     doi = {10.22436/jnsa.007.03.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.01/}
}
TY  - JOUR
AU  - Parvaneh, Vahid
AU  - Salimi, Peyman
AU  - Vetro, Pasquale
AU  - Nezhad, Akbar Dehghan
AU  - Radenović, Stojan
TI  - Fixed point results for  \(GP_{(\Lambda,\Theta)}\)-contractive mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 150
EP  - 159
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.01/
DO  - 10.22436/jnsa.007.03.01
LA  - en
ID  - JNSA_2014_7_3_a0
ER  - 
%0 Journal Article
%A Parvaneh, Vahid
%A Salimi, Peyman
%A Vetro, Pasquale
%A Nezhad, Akbar Dehghan
%A Radenović, Stojan
%T Fixed point results for  \(GP_{(\Lambda,\Theta)}\)-contractive mappings
%J Journal of nonlinear sciences and its applications
%D 2014
%P 150-159
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.01/
%R 10.22436/jnsa.007.03.01
%G en
%F JNSA_2014_7_3_a0
Parvaneh, Vahid; Salimi, Peyman; Vetro, Pasquale; Nezhad, Akbar Dehghan; Radenović, Stojan. Fixed point results for  \(GP_{(\Lambda,\Theta)}\)-contractive mappings. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 3, p. 150-159. doi : 10.22436/jnsa.007.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.03.01/

[1] Abbas, M.; Nazir, T.; Vetro, P. Common fixed point results for three maps in G-metric spaces, Filomat, Volume 25:4 (2011), pp. 1-17

[2] Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl., Volume 159 (2012), pp. 3234-3242

[3] Aydi, H.; Karapinar, E.; P. Salimi Some fixed point results in GP-metric spaces, J. Appl. Math., Article ID 891713. , 2012

[4] Aydi, H.; Shatanawi, W.; C. Vetro On generalized weak G-contraction mapping in G-metric spaces, Comput. Math. Appl., Volume 62 (2011), pp. 4223-4229

[5] Aydi, H.; Vetro, C.; Sintunavarat, W.; P. Kumam Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces, Fixed Point Theory Appl., 2012: 124, 2012

[6] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , Fund. Math., Volume 3 (1922), pp. 133-181

[7] Berinde, V.; Vetro, F. Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl., 2012:105, 2012

[8] Chatterjea, S. K. Fixed point theorem, Comte Rend. Acad. Bulgare Sc., Volume 25 (1972), pp. 727-730

[9] Chauhan, S.; B. D. Pant Fixed point theorems for compatible and subsequentially continuous mappings in Menger spaces, J. Nonlinear Sci. Appl., Volume 7 (2) (2014), pp. 78-89

[10] Lj. B. Ćirić A Generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273

[11] Ćirić, Lj. B.; Samet, B.; Aydi, H.; C. Vetro Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., Volume 218 (2011), pp. 2398-2406

[12] Cohen, L. W.; Goffman, C. The topology of ordered Abelian groups, Trans. Amer. Math. Soc., Volume 67 (1949), pp. 310-319

[13] Damjanovic, B.; Samet, B.; Vetro, C. Common fixed point theorems for multi-valued maps, Acta Math. Sci. Ser. B Engl. Ed., Volume 32 (2012), pp. 818-824

[14] Bari, C. Di; Vetro, P. Fixed points for weak \(\phi\)-contractions on partial metric spaces, Int. J. of Engineering, Contemporary Mathematics and Sciences, Volume 1 (2011), pp. 5-13

[15] Bari, C. Di; Milojević, M.; S; Radenović; P. Vetro Common fixed points for self-mappings on partial metric spaces, Fixed Point Theory Appl., 2012:140, 2012

[16] Bari, C. Di; Kadelburg, Z.; Nashine, H.; Radenović, S. Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces, Fixed Point Theory Appl., 2012:113, 2012

[17] Kannan, R. Some results on fixed points, Bull. Cal. Math. Soc., Volume 60 (1968), pp. 71-76

[18] Rosa, V. La; Vetro, P. Fixed points for Geraghty-contractions in partial metric spaces, J. Nonlinear Sci. Appl., Volume 7 (1) (2014), pp. 1-10

[19] Matthews, S. G. Partial metric topology , in: Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., Volume 728 (1994), pp. 183-197

[20] D. Miheţ Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces , J. Nonlinear Sci. Appl., Volume 6 (1) (2013), pp. 35-40

[21] Mustafa, Z.; Sims, B. A new approach to generalized metric spaces, J. Nonlinear Convex Anal., Volume 7 (2) (2006), pp. 289-297

[22] Mustafa, Z.; Obiedat, H. A fixed point theorem of Reich in G-metric spaces, CUBO, Volume 12 (1) (2010), pp. 83-93

[23] Mustafa, Z.; Shatanawi, W.; Bataineh, M. Existence of fixed point results in G-metric spaces, Int. J. Math. Math. Sci., Article ID 283028, Volume 2009 (2009), pp. 1-10

[24] Mustafa, Z.; Sims, B. Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl., Article ID 917175, Volume 2009 (2009), pp. 1-10

[25] Paesano, D.; Vetro, P. Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., Volume 159 (2012), pp. 911-920

[26] Radenović, S.; Salimi, P.; Pantelic, S.; Vujaković, J. A note on some tripled coincidence point results in G-metric spaces, Int. J. Math. Sci and Engg. Appls.(November 2012), Volume 6 (2012), pp. 23-38

[27] Reich, S. Kannan's fixed point theorem, Boll. Un. Mat. Ital., Volume 4 (1971), pp. 1-11

[28] Rus, I. A. Fixed point theory in partial metric spaces, Anal. Univ. de Vest, Timisoara, Seria Matematică-Informatică, Volume 46 (2008), pp. 141-160

[29] Samet, B.; Rajović, M.; Lazović, R.; Stoiljković, R. Common fixed point results for nonlinear contractions in ordered partial metric spaces , Fixed Point Theory Appl., 2011:71 , 2011

[30] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165

[31] Saadati, R.; Vaezpour, S. M.; Vetro, P.; B. E. Rhoades Fixed point theorems in generalized partially ordered G-metric spaces , Mathematical and Computer Modelling., Volume 52 (2010), pp. 797-801

[32] Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 1861-1869

[33] Vetro, C.; Vetro, F. Common fixed points of mappings satisfying implicit relations in partial metric spaces, J. Nonlinear Sci. Appl. , Volume 6 (3) (2013), pp. 152-161

[34] Vetro, F. On approximating curves associated with nonexpansive mappings, Carpathian J. Math., Volume 27 (2011), pp. 142-147

[35] Vetro, F.; Radenović, S. Nonlinear -quasi-contractions of Ćirić-type in partial metric spaces, Appl. Math. Comput., Volume 219 (4) (2012), pp. 1594-1600

[36] Zand, M. R. A.; A. D. Nezhad A generalization of partial metric spaces, Journal of Contemporary Applied Mathematics., Volume 24 (2011), pp. 86-93

Cité par Sources :