Weak convergence theorems for two asymptotically quasi-nonexpansive non-self mappings in uniformly convex Banach spaces
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 2, p. 138-149.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to establish some weak convergence theorems of modified two-step iteration process with errors for two asymptotically quasi-nonexpansive non-self mappings in the setting of real uniformly convex Banach spaces if E satisfies Opial's condition or the dual $E^*$ of $E$ has the Kedec-Klee property. Our results extend and improve some known corresponding results from the existing literature.
DOI : 10.22436/jnsa.007.02.08
Classification : 47H09, 47H10, 47J25
Keywords: Asymptotically quasi-nonexpansive non-self mappings, common fixed point, the modified two-step iteration process with errors for non-self maps, uniformly convex Banach space, weak convergence.

Saluja, G. S. 1

1 Department of Mathematics and I.T., Govt. N.P.G. College of Science, Raipur (C.G.), India
@article{JNSA_2014_7_2_a7,
     author = {Saluja, G. S.},
     title = {Weak convergence theorems for two asymptotically quasi-nonexpansive non-self mappings in uniformly convex {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {138-149},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     doi = {10.22436/jnsa.007.02.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.08/}
}
TY  - JOUR
AU  - Saluja, G. S.
TI  - Weak convergence theorems for two asymptotically quasi-nonexpansive non-self mappings in uniformly convex Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 138
EP  - 149
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.08/
DO  - 10.22436/jnsa.007.02.08
LA  - en
ID  - JNSA_2014_7_2_a7
ER  - 
%0 Journal Article
%A Saluja, G. S.
%T Weak convergence theorems for two asymptotically quasi-nonexpansive non-self mappings in uniformly convex Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2014
%P 138-149
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.08/
%R 10.22436/jnsa.007.02.08
%G en
%F JNSA_2014_7_2_a7
Saluja, G. S. Weak convergence theorems for two asymptotically quasi-nonexpansive non-self mappings in uniformly convex Banach spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 2, p. 138-149. doi : 10.22436/jnsa.007.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.08/

[1] S. C. Bose Weak convergence to a fixed point of an asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 68 (1978), pp. 305-308

[2] Chang, S. S.; Cho, Y. J.; Zhou, H. Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc., Volume 38:6 (2001), pp. 1245-1260

[3] Chidume, C. E. On the approximation of fixed points of nonexpansive mappings, Houston J. Math., Volume 7 (1981), pp. 345-355

[4] C. E. Chidume Nonexpansive mappings, generalizations and iterative algorithms, In: Agarwal R.P., O'Reagan D.eds. Nonlinear Analysis and Application. To V. Lakshmikantam on his 80th Birthday (Research Monograph), Dordrecht: Kluwer Academic Publishers, pp. 383-430

[5] Chidume, C. E.; Ofoedu, E. U.; H. Zegeye Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl., Volume 280 (2003), pp. 364-374

[6] Chidume, C. E.; Shahzad, N.; Zegeye, H. Convergence theorems for mappings which are asymptotically nonexpansive in the intermediate sense, Numer. Funct. Anal. Optimiz., Volume 25:3-4 (2004), pp. 239-257

[7] Chidume, C. E.; Shahzad, N.; Zegeye, H. Strong convergence theorems for nonexpansive mappings in arbitrary Banach spaces, Nonlinear Anal. (Submitted)

[8] Goebel, K.; Kirk, W. A. A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174

[9] Ishikawa, S. Fixed points by a new iteration method, Proc. Amer. Math. Soc., Volume 44 (1974), pp. 147-150

[10] Ishikawa, S. Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., Volume 59 (1976), pp. 65-71

[11] W. Kaczor Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups, J. Mathematical Analysis and Applications, Volume 272:2 (2002), pp. 565-574

[12] Khan, S. H.; Takahashi, W. Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn., Volume 53 (2001), pp. 143-148

[13] W. R. Mann Mean value methods in iteration , Proc. Amer. Math. Soc. , Volume 4 (1953), pp. 506-510

[14] Opial, Z. Weak convergence of the sequence of successive approximatins for nonexpansive mappings , Bull. Amer. Math. Soc., Volume 73 (1967), pp. 591-597

[15] Osilike, M. O.; Aniagbosor, S. C. Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling, Volume 32 (2000), pp. 1181-1191

[16] G. B. Passty Construction of fixed points for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 84 (1982), pp. 212-216

[17] Reich, S. Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Volume 67 (1979), pp. 274-276

[18] B. E. Rhoades Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl., Volume 183 (1994), pp. 118-120

[19] Saluja, G. S. Convergence of fixed point of asymptotically quasi-nonexpansive type mappings in convex metric spaces, J. Nonlinear Sci. Appl., Volume 1:3 (2008), pp. 132-144

[20] Schu, J. Iterative construction of fixed points of asymptotically nonexpansive mappings , J. Math. Anal. Appl., Volume 158 (1991), pp. 407-413

[21] Schu, J. Weak and strong convergence theorems to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., Volume 43 (1991), pp. 153-159

[22] Tan, K. K.; Xu, H. K. A nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., Volume 45 (1992), pp. 25-36

[23] Tan, K. K.; Xu, H. K. The nonlinear ergodic theorem for asymptotically nonexpansive mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 114 (1992), pp. 399-404

[24] Tan, K. .; H. K. Xu Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., Volume 178 (1993), pp. 301-308

[25] Tan, K. K.; Xu, H. K. Fixed point iteration processes for asymptotically nonexpansive mappings , Proc. Amer. Math. Soc., Volume 122 (1994), pp. 733-739

[26] Thianwan, T. Convergence criteria of modified Noor iterations with errors for three asymptotically nonexpansive non-self mappings , J. Nonlinear Sci. Appl., Volume 6:3 (2013), pp. 181-197

[27] Xu, H. K. Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Analysis, Volume 16 (1991), pp. 1139-1146

[28] Y. Xu Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl., Volume 224 (1998), pp. 91-101

Cité par Sources :