Voir la notice de l'article provenant de la source International Scientific Research Publications
Saluja, G. S. 1
@article{JNSA_2014_7_2_a7, author = {Saluja, G. S.}, title = {Weak convergence theorems for two asymptotically quasi-nonexpansive non-self mappings in uniformly convex {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {138-149}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2014}, doi = {10.22436/jnsa.007.02.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.08/} }
TY - JOUR AU - Saluja, G. S. TI - Weak convergence theorems for two asymptotically quasi-nonexpansive non-self mappings in uniformly convex Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 138 EP - 149 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.08/ DO - 10.22436/jnsa.007.02.08 LA - en ID - JNSA_2014_7_2_a7 ER -
%0 Journal Article %A Saluja, G. S. %T Weak convergence theorems for two asymptotically quasi-nonexpansive non-self mappings in uniformly convex Banach spaces %J Journal of nonlinear sciences and its applications %D 2014 %P 138-149 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.08/ %R 10.22436/jnsa.007.02.08 %G en %F JNSA_2014_7_2_a7
Saluja, G. S. Weak convergence theorems for two asymptotically quasi-nonexpansive non-self mappings in uniformly convex Banach spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 2, p. 138-149. doi : 10.22436/jnsa.007.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.08/
[1] Weak convergence to a fixed point of an asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 68 (1978), pp. 305-308
[2] Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc., Volume 38:6 (2001), pp. 1245-1260
[3] On the approximation of fixed points of nonexpansive mappings, Houston J. Math., Volume 7 (1981), pp. 345-355
[4] Nonexpansive mappings, generalizations and iterative algorithms, In: Agarwal R.P., O'Reagan D.eds. Nonlinear Analysis and Application. To V. Lakshmikantam on his 80th Birthday (Research Monograph), Dordrecht: Kluwer Academic Publishers, pp. 383-430
[5] Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl., Volume 280 (2003), pp. 364-374
[6] Convergence theorems for mappings which are asymptotically nonexpansive in the intermediate sense, Numer. Funct. Anal. Optimiz., Volume 25:3-4 (2004), pp. 239-257
[7] Strong convergence theorems for nonexpansive mappings in arbitrary Banach spaces, Nonlinear Anal. (Submitted)
[8] A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174
[9] Fixed points by a new iteration method, Proc. Amer. Math. Soc., Volume 44 (1974), pp. 147-150
[10] Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., Volume 59 (1976), pp. 65-71
[11] Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups, J. Mathematical Analysis and Applications, Volume 272:2 (2002), pp. 565-574
[12] Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn., Volume 53 (2001), pp. 143-148
[13] Mean value methods in iteration , Proc. Amer. Math. Soc. , Volume 4 (1953), pp. 506-510
[14] Weak convergence of the sequence of successive approximatins for nonexpansive mappings , Bull. Amer. Math. Soc., Volume 73 (1967), pp. 591-597
[15] Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling, Volume 32 (2000), pp. 1181-1191
[16] Construction of fixed points for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 84 (1982), pp. 212-216
[17] Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., Volume 67 (1979), pp. 274-276
[18] Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl., Volume 183 (1994), pp. 118-120
[19] Convergence of fixed point of asymptotically quasi-nonexpansive type mappings in convex metric spaces, J. Nonlinear Sci. Appl., Volume 1:3 (2008), pp. 132-144
[20] Iterative construction of fixed points of asymptotically nonexpansive mappings , J. Math. Anal. Appl., Volume 158 (1991), pp. 407-413
[21] Weak and strong convergence theorems to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., Volume 43 (1991), pp. 153-159
[22] A nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., Volume 45 (1992), pp. 25-36
[23] The nonlinear ergodic theorem for asymptotically nonexpansive mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 114 (1992), pp. 399-404
[24] Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., Volume 178 (1993), pp. 301-308
[25] Fixed point iteration processes for asymptotically nonexpansive mappings , Proc. Amer. Math. Soc., Volume 122 (1994), pp. 733-739
[26] Convergence criteria of modified Noor iterations with errors for three asymptotically nonexpansive non-self mappings , J. Nonlinear Sci. Appl., Volume 6:3 (2013), pp. 181-197
[27] Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Analysis, Volume 16 (1991), pp. 1139-1146
[28] Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl., Volume 224 (1998), pp. 91-101
Cité par Sources :