Application of Schauder fixed point theorem to a coupled system of differential equations of fractional order :
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 2, p. 131-137 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this paper, by using Schauder fixed point theorem, we study the existence of at least one positive solution to a coupled system of fractional boundary value problems given by

$ \begin{cases} -D^{\nu_1}_{0^+}y_1(t) = \lambda_1a_1(t)f(t, y_1(t), y_2(t)) + e_1(t),\\ -D^{\nu_2}_{0^+}y_2(t) = \lambda_2a_2(t)g(t, y_1(t), y_2(t)) + e_2(t), \end{cases} $

where $\nu_1,\nu_2\in (n - 1; n]$ for $n > 3$ and $n \in N$, subject to the boundary conditions $y^(i)_1 (0) = 0 = y^(i)_2 (0)$, for $0 \leq i \leq n - 2$, and $[D^{\alpha}_{0^+}y_1(t)]_{t=1}=0=[D^{\alpha}_{0^+}y_2(t)]_{t=1}$, for $1 \leq\alpha\leq n - 2$.

DOI : 10.22436/jnsa.007.02.07
Classification : 47H10, 34A08, 34B18.
Keywords: Fractional differential equation, Schauder fixed point theorem, Positive solution.

Hao, Mengru 1 ; Zhai, Chengbo 1

1 School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, P.R. China
@article{10_22436_jnsa_007_02_07,
     author = {Hao, Mengru and Zhai, Chengbo},
     title = {Application of {Schauder} fixed point theorem to a coupled system of differential equations of fractional order},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {131-137},
     year = {2014},
     volume = {7},
     number = {2},
     doi = {10.22436/jnsa.007.02.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.07/}
}
TY  - JOUR
AU  - Hao, Mengru
AU  - Zhai, Chengbo
TI  - Application of Schauder fixed point theorem to a coupled system of differential equations of fractional order
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 131
EP  - 137
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.07/
DO  - 10.22436/jnsa.007.02.07
LA  - en
ID  - 10_22436_jnsa_007_02_07
ER  - 
%0 Journal Article
%A Hao, Mengru
%A Zhai, Chengbo
%T Application of Schauder fixed point theorem to a coupled system of differential equations of fractional order
%J Journal of nonlinear sciences and its applications
%D 2014
%P 131-137
%V 7
%N 2
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.07/
%R 10.22436/jnsa.007.02.07
%G en
%F 10_22436_jnsa_007_02_07
Hao, Mengru; Zhai, Chengbo. Application of Schauder fixed point theorem to a coupled system of differential equations of fractional order. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 2, p. 131-137. doi: 10.22436/jnsa.007.02.07

[1] Agarwal, R. P.; Benchohra, M.; S. Hamani A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math., Volume 109 (2010), pp. 973-1033

[2] Ahmad, B.; Nieto, J. J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions , Comput. Math. Appl., Volume 58 (2009), pp. 1838-1843

[3] Anguraj, A.; Ranjini, M. C. Existence of mild solutions of random impulsive functional differential equations with almost sectorial operators, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 174-185

[4] Anguraj, A.; M. L. Maheswari Existence of solutions for fractional impulsive neutral functional infinite delay integrodifferential equations with nonlocal conditions, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 271-280

[5] Ahmad, B.; Nieto, J. J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., Volume 58 (2009), pp. 1838-1843

[6] Bai, C. Z.; Fang, J. X. The existence of a positive solution for a singular coupled system of a nonlinear fractional differential equations, Appl. Math. Comput., Volume 150 (3) (2004), pp. 611-621

[7] Benchohra, M.; B. A. Slimani Existence and uniqueness of solutions to impulsive fractional differential equations, Electron. J. Differ. Equat., Volume 2009 (10) (2009), pp. 1-11

[8] Dunninger, D.; H. Wang Existence and multiplicity of positive solutions for elliptic systems , Nonlinear Anal., Volume 29 (1997), pp. 1051-1060

[9] Goodrich, C. S. Existence of a positive solution to systems of differential equations of fractioanl order, Comput. Math. Appl. , Volume 62 (2011), pp. 1251-1268

[10] Goodrich, C. S. Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett., Volume 23 (2010), pp. 1050-1055

[11] Guezane-Lakoud, A.; Khaldi, R. Solvability of a two-point fractional boundary value problem, J. Nonlinear Sci. Appl. , Volume 5 (2012), pp. 64-73

[12] Kavitha, V.; Arjunan, M. M. Controllability of impulsive quasi-linear fractional mixed volterra-fredholm-type integrodifferential equations in Banach spaces, J. Nonlinear Sci. Appl., Volume 4 (2) (2011), pp. 152-169

[13] Kilbas, A. A.; Srivastava, H. H.; Trujillo, J. J. Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, 2006

[14] Liu, Y. J.; H. P. Shi Existence of unbounded positive solutions for BVPs of singular fractional differential equations, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 281-293

[15] Miller, K. S.; Ross, B. An introduction to the fractional calculus and differential equations, John Wiley, New York, 1993

[16] Podlubny, I. Fractional differential equations, Academic Press, New York, 1999

[17] Qiu, T. T.; Z. B. Bai Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Nonlinear Sci. Appl. , Volume 1 (3) (2008), pp. 123-131

[18] Rehman, M. ur; Khan, R. A. Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations, Appl. Math. Lett., Volume 23 (2010), pp. 1038-1044

[19] Sun, S. R.; Li, Q. P.; Y. N. Li Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations, Comput. Math. Appl., Volume 64 (2012), pp. 3310-3320

[20] Su, X. W. Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., Volume 22 (2009), pp. 64-69

[21] Tarasov, V. E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, HEP, 2010

[22] Wang, G.; Zhang, L.; G. Song Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions, Nonlinear Anal.: TMA, Volume 74 (2011), pp. 974-982

[23] Wang, T. G.; Xie, F. Existence and uniqueness of fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., Volume 1 (4) (2008), pp. 206-212

[24] Yang, C.; Zhai, C. B. Uniqueness of positive solutions for a fractional differential equation via a fixed point theorem of a sum operator, Electron. J. Differ. Equat., Volume 70 (2012), pp. 1-8

[25] Zhai, C. B.; Yan, W. P.; Yang, C. Sum operator method for the existence and uniqueness of positive solutions to RiemannCLiouville fractional differential equation boundary value problems, Commun. Nonlinear Sci. Numer. Simulat., Volume 18 (2013), pp. 858-866

Cité par Sources :