Voir la notice de l'article provenant de la source International Scientific Research Publications
Haddadi, Mohammad Reza 1
@article{JNSA_2014_7_2_a5, author = {Haddadi, Mohammad Reza}, title = {Best {Proximity} {Point} {Iteration} for {Nonexpensive} {Mapping} in {Banach} {Spaces}}, journal = {Journal of nonlinear sciences and its applications}, pages = {126-130}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2014}, doi = {10.22436/jnsa.007.02.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.06/} }
TY - JOUR AU - Haddadi, Mohammad Reza TI - Best Proximity Point Iteration for Nonexpensive Mapping in Banach Spaces JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 126 EP - 130 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.06/ DO - 10.22436/jnsa.007.02.06 LA - en ID - JNSA_2014_7_2_a5 ER -
%0 Journal Article %A Haddadi, Mohammad Reza %T Best Proximity Point Iteration for Nonexpensive Mapping in Banach Spaces %J Journal of nonlinear sciences and its applications %D 2014 %P 126-130 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.06/ %R 10.22436/jnsa.007.02.06 %G en %F JNSA_2014_7_2_a5
Haddadi, Mohammad Reza. Best Proximity Point Iteration for Nonexpensive Mapping in Banach Spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 2, p. 126-130. doi : 10.22436/jnsa.007.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.06/
[1] Fixed point theorems for compatible and subsequentially continuous mappings in Menger spaces, J. Nonlinear Sci. Appl., Volume 7 (2001), pp. 78-89
[2] Best proximity points of non-self mappings, TOP, Volume 21 (2013), pp. 287-295
[3] Proximinal normal structure and relatively nonexpansive mappings, Studia Math, Volume 171 (2005), pp. 283-293
[4] Existence and convergence of best proximity points , J. Math. Anal. Appl., Volume 323 (2006), pp. 1001-1006
[5] Proximal Weakly Contractive and Proximal Nonexpansive Non-self-Mappings in Metric and Banach Spaces , J. Optim. Theory Appl. , Volume 158 (2013), pp. 615-625
[6] Some Results on the Best Proximity Pair, Abstract and Applied Analysis, ID 158430, Volume 2011 (2011), pp. 1-9
[7] Best proximity point theorems for rational proximal contractions, Fixed Point Theory and Applications, 2013:95 , 2013
[8] Weak and strong convergence of an explicit iteration process for an asymptotically quasi-i-nonexpansive mapping in Banach spaces , J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 403-411
[9] Best proximity points: global optimal approximate solution, J Global Optim. , doi:10.1007/s10898- 009-9521-0, 2010
[10] Extensions of Banachs contraction principle, Numer Funct Anal Optim, Volume 31 (2010), pp. 569-576
[11] Best proximity pair theorems for relatively nonexpansive mappings, Appl Gen Topol, Volume 10(1) (2009), pp. 21-28
[12] A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Analysis, Volume 74 (2011), pp. 4804-4808
[13] An iterative approach to quadratic optimization, J. Optim. Theory Appl., Volume 116 (2003), pp. 659-678
Cité par Sources :