Existence of solutions for quasi-linear impulsive functional integrodifferential equations in Banach spaces
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 2, p. 115-125.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We study the existence of mild solutions for quasilinear impulsive integrodifferential equation in Banach spaces. The results are established by using Hausdorff's measure of noncompactness and fixed point theorem. Application is provided to illustrate the theory.
DOI : 10.22436/jnsa.007.02.05
Classification : 34A37, 34K05, 34K30, 47H10
Keywords: Mild solution, nonlocal conditions, impulsive condition, Hausdorff's measure of noncompactness, fixed point theorem.

Samuel, Francis Paul 1 ; Balachandran, Krishnan 2

1 Department of Mathematics and Physics, University of Eastern Africa, Baraton, Eldoret 2500 - 30100, Kenya
2 Department of Mathematics, Bharathiar University, Coimbatore 641046, India
@article{JNSA_2014_7_2_a4,
     author = {Samuel, Francis Paul and Balachandran, Krishnan},
     title = {Existence of solutions for quasi-linear impulsive functional integrodifferential equations in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {115-125},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     doi = {10.22436/jnsa.007.02.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.05/}
}
TY  - JOUR
AU  - Samuel, Francis Paul
AU  - Balachandran, Krishnan
TI  - Existence of solutions for quasi-linear impulsive functional integrodifferential equations in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 115
EP  - 125
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.05/
DO  - 10.22436/jnsa.007.02.05
LA  - en
ID  - JNSA_2014_7_2_a4
ER  - 
%0 Journal Article
%A Samuel, Francis Paul
%A Balachandran, Krishnan
%T Existence of solutions for quasi-linear impulsive functional integrodifferential equations in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2014
%P 115-125
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.05/
%R 10.22436/jnsa.007.02.05
%G en
%F JNSA_2014_7_2_a4
Samuel, Francis Paul; Balachandran, Krishnan. Existence of solutions for quasi-linear impulsive functional integrodifferential equations in Banach spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 2, p. 115-125. doi : 10.22436/jnsa.007.02.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.05/

[1] Ayerbe, J. M.; Benavides, T. D.; Acedo, G. L. Measure of noncmpactness in in metric fixed point theorem, Birkhauser, Basel, 1997

[2] Balachandran, K.; J. Y. Park Existence of solutions and controllability of nonlinear integrodifferential systems in Banach spaces, Mathematical Problems in Engineering, Volume 2 (2003), pp. 65-79

[3] Balachandran, K.; Samuel, F. Paul Existence of mild solutions to quasilinear integrodifferential equations with impulsive conditions, Electronic Journal of Differential Equations, Volume 84 (2009), pp. 1-9

[4] Banas, J.; K. Goebel Measure of noncompactness in Banach spaces , Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcle Dekker, New York, 1980

[5] Banas, J.; El-Sayed, W.G. Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, Journal of Mathematical Analysis and Applications, Volume 167 (1992), pp. 133-151

[6] Both, D. Multivalued perturbation of m-accretive differential inclusions, Israel Journal of Mathematics, Volume 108 (1998), pp. 109-138

[7] L. Byszewski Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, Journal of Mathematical Analysis and Applications, Volume 162 (1992), pp. 494-505

[8] Byszewski, L.; Akca, H. Existence of solutions of a semilinear functional-differential evolution nonlocal problem, Nonlinear Analysis, Volume 34 (1998), pp. 65-72

[9] Byszewski, L.; Lakshmikanthan, V. Theorems about the existence and uniqueness of solutions of a nonlocal Cauchy problem in Banach spaces, Applicable Analysis, Volume 40 (1990), pp. 11-19

[10] F. S. De Blasi On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie, Volume 21 (1977), pp. 259-262

[11] Dong, Q.; Li, G. The Existence of solutions for semilinear differential equations with nonlocal conditions in Banach spaces, Electronic Journal of Qualitative Theory of Differential Equations, Volume 47 (2009), pp. 1-13

[12] Dong, Q.; Li, G.; Zhang, J. Quasilinear nonlocal integrodifferential equations in Banach spaces, Electronic Journal of Differential Equations, Volume 19 (2008), pp. 1-8

[13] Emmanuele, G. Measures of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. Math. R. S. Roumanie, Volume 25 (1981), pp. 353-358

[14] Fan, Z.; Dong, Q.; G. Li Semilinear differential equations with nonlocal conditions in Banach spaces, International Journal of Nonlinear Science, Volume 2 (2006), pp. 131-139

[15] Gunasekar, T.; Samuel, F. Paul; Arjunan, M. Mallika Existence results for impulsive neutral functional integrodifferential equation with infinite delay, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 234-243

[16] Guo, D.; Liu, X. External solutions of nonlinear impulsive integrodifferential equations in Banach spaces, Journal of Mathematical Analysis and Applications, Volume 177 (1993), pp. 538-552

[17] Heinz, H. P. On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Analysis, Volume 7 (1983), pp. 1351-1371

[18] Kamenskii, M.; Obukhovskii, V.; Zecca, P. Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter Series. Nonlinear Analysis and Applications, Vol.7, de Gruyter, Berlin, 2001

[19] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, Singapore, World Scientific, 1989

[20] Liang, J.; Liu, J. H.; Xiao, T. J. Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Mathematical and Computer Modelling, Volume 49 (2009), pp. 798-804

[21] Luo, Z.; Nieto, J. J. New results for the periodic boundary value problem for impulsive integrodifferential equations, Nonlinear Analysis, Volume 70 (2009), pp. 2248-2260

[22] Arjunan, M. Mallika; Kavitha, V.; S. Selvi Existence results for impulsive differential equations with nonlocal conditions via measures of noncompactness, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 195-205

[23] Ntouyas, S. K.; Tsamatos, P. Ch. Global existence for semilinear evolution equations with nonlocal conditions, Journal of Mathematical Analysis and Applications, Volume 210 (1997), pp. 679-687

[24] Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983

Cité par Sources :