On a new class of abstract impulsive functional differential equations of fractional order
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 2, p. 102-114.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we prove the existence and uniqueness of mild solutions for the impulsive fractional differential equations for which the impulses are not instantaneous in a Banach space H. The results are obtained by using the analytic semigroup theory and the fixed points theorems.
DOI : 10.22436/jnsa.007.02.04
Classification : 34K45, 34A60, 35R12, 45J05
Keywords: Impulsive fractional differential equations, Analytic semigroup, Fixed point theorems.

Kumar, Pradeep 1 ; Pandey, Dwijendra N. 2 ; Bahuguna, D. 1

1 Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur-208016, India
2 Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India
@article{JNSA_2014_7_2_a3,
     author = {Kumar, Pradeep and Pandey, Dwijendra N. and Bahuguna, D.},
     title = {On a new class of abstract impulsive functional differential equations of fractional order},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {102-114},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     doi = {10.22436/jnsa.007.02.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.04/}
}
TY  - JOUR
AU  - Kumar, Pradeep
AU  - Pandey, Dwijendra N.
AU  - Bahuguna, D.
TI  - On a new class of abstract impulsive functional differential equations of fractional order
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 102
EP  - 114
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.04/
DO  - 10.22436/jnsa.007.02.04
LA  - en
ID  - JNSA_2014_7_2_a3
ER  - 
%0 Journal Article
%A Kumar, Pradeep
%A Pandey, Dwijendra N.
%A Bahuguna, D.
%T On a new class of abstract impulsive functional differential equations of fractional order
%J Journal of nonlinear sciences and its applications
%D 2014
%P 102-114
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.04/
%R 10.22436/jnsa.007.02.04
%G en
%F JNSA_2014_7_2_a3
Kumar, Pradeep; Pandey, Dwijendra N.; Bahuguna, D. On a new class of abstract impulsive functional differential equations of fractional order. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 2, p. 102-114. doi : 10.22436/jnsa.007.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.02.04/

[1] Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, , 1983

[2] I. Podlubny Fractional differential equations, Academic Press, , 1999

[3] Lakshmikantham, V.; Leela, S.; J. Devi Vasundhara Theory of fractional dynamic systems, Cambridge Scientific Publishers, , 2009

[4] Diethelm, K. The analysis of fractional differential equations, Lecture notes in mathematics, Berlin Heidelberg: Springer-Verlag, 2010

[5] Kilbas, A. Anatoly; Srivastava, H. M.; J. J. Trujillo Theory and applications of fractional differential equations, B.V.: Elsevier Science, , 2006

[6] Miller, KS.; Ross, B. An introduction to the fractional calculus and differential equations, John Wiley, , 1993

[7] Wang, N. Rong; Chen, De-H.; Xiao, Ti-J. Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, Volume 252 (2012), pp. 202-235

[8] F. Mainardi On the initial value problem for the fractional diffusion-wave equation, Ser. Adv. Math. Appl. Sci., Volume 23 (1994), pp. 246-251

[9] Mainardi, F. The time fractional diffusion-wave equation, Radiophys. and Quantum Electronics, Volume 38 (1995), pp. 13-24

[10] Mainardi, F.; Mura, A.; G. Pagnini The functions of the Wright type in fractional calculus, Lecture Notes of Seminario Interdisciplinare di Mathematica, Volume 9 (2010), pp. 111-128

[11] Mainardi, F.; o, R. Goren On Mittag-Leffler-type functions in fractional evolution processes. Higher transcendental functions and their applications, J. Comput. Appl. Math., Volume 118 (2000), pp. 283-299

[12] Mainardi, F.; Mura, A.; G. Pagnini The M-Wright function in time-fractional diffusion processes: a tutorial survey, Int. J. Differ. Equ. (2010), pp. 1-29

[13] H. Pollard The representation of \(e^{-x^\lambda}\) as a Laplace integral, Bull. Amer. Math. Soc., Volume 52 (1946), pp. 908-910

[14] El-Borai, M. Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, Volume 14 (2002), pp. 433-440

[15] M. W. Michalski Derivatives of non-integer order and their applications , Dissertationes mathematicae, Inst Math Polish Acad Sci, 1993

[16] Hernández, E.; O'Regan, D. On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., Volume 141 (2013), pp. 1641-1649

[17] Benchohra, M.; Henderson, J.; Ntouyas, S. Impulsive differential equations and inclusions, Contemporary Mathematics and Its Applications, Hindawi Publishing Corporation, New York, 2006

[18] Wang, J.; Fečkan, M.; Zhou, Y. On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., Volume 8 (2011), pp. 345-361

[19] Wang, J.; Li, X.; Wei, W. On the natural solution of an impulsive fractional differential equation of order \(q \in (1; 2)\), Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 4384-4394

[20] Li, X.; Chen, F.; Xuezhu Li Generalized anti-periodic boundary value problems of impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 28-41

[21] Kavitha, V.; Arjunan, M. Mallika; Ravichandran, C. Existence results for impulsive systems with nonlocal conditions in Banach spaces , J. Nonlinear Sci. Appl., Volume 4 (2011), pp. 138-151

[22] Gunasekar, T.; Samuel, F. P.; Arjunan, M. Mallika Existence results for impulsive neutral functional integrodifferential equation with infinite delay, J. Nonlinear Sci. Appl., Volume 6 (2013), pp. 234-243

[23] Anguraj, A.; Arjunan, M. Mallika; Hernández, E. M. Existence results for an impulsive neutral functional differential equation with state-dependent delay, Appl.Anal., Volume 86 (2007), pp. 861-872

[24] Cuevas, C.; N'Guérékata, G.; Rabelo, M. Mild solutions for impulsive neutral functional differential equations with state- dependent delay, Semigroup Forum, Volume 80 (2010), pp. 375-390

[25] Hernández, E.; Anguraj, A.; Arjunan, M. Mallika Existence results for an impulsive second order differential equation with state-dependent delay, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 17 (2010), pp. 287-301

[26] Arjunan, M. Maliika; Kavitha, V. Existence results for impulsive neutral functional differential equation with state-dependent delay, Electorn. J. Qual. Theory Differ. Equ. (2009), pp. 1-13

[27] Chang, Y. K.; Anguraj, A.; Arjunan, M. Mallika Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal. Hybrid Syst., Volume 2 (2008), pp. 209-218

[28] Chang, Y. K.; Nieto, J. Juan Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators, Funct. Anal. Optim., Volume 30 (2009), pp. 227-244

[29] Ding, W.; Wang, Yu. New result for a class of impulsive differential equation with integral boundary conditions, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 1095-1105

[30] Bai, Ch. Existence result for boundary value problem of nonlinear impulsive fractional differential equation at resonance, J. Appl. Math. Comput., Volume 39 (2012), pp. 421-443

[31] M. Gisle Mophou Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear Anal., Volume 72 (2010), pp. 1604-1615

[32] Liu, Y. Existence of solutions for impulsive differential models on half lines involving Caputo fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 2604-2625

[33] Wang, G.; Ahmad, B.; Zhang, L. On impulsive boundary value problems of fractional differential equations with irregular boundary conditions, Abstr. Appl. Anal. (2012), pp. 1-15

[34] Debbouche, A.; Baleanu, D. Controllability of fractional evolution nonlocal impulsive quasilinear delay integro- differential systems, Comput. Math. Appl., Volume 62 (2011), pp. 1442-1450

[35] Rabelo, N. Marcos; Henrique, M.; G. Siracusa Existence of integro-differential solutions for a class of abstract partial impulsive differential equations, J. Inequal. Appl. (2011), pp. 1-19

[36] Zhang, D. Multiple solutions of nonlinear impulsive differential equations with Dirichlet boundary conditions via variational method, Results Math., Volume 63 (2013), pp. 611-628

[37] Wang, J.; Zhou, Y. Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. Real World Appl., Volume 12 (2011), pp. 3642-3653

[38] Benchohra, M.; Henderson, J.; Ntouyas, S. K. Existence results for impulsive semilinear neutral functional differential equations in Banach spaces, Differential Equations Math. Phys., Volume 25 (2002), pp. 105-120

Cité par Sources :