Voir la notice de l'article provenant de la source International Scientific Research Publications
Ashtiani, Arya Aghili 1 ; Raja, Pandora 2 ; Nikravesh, Sayyed Kamaloddin Yadavar 3
@article{JNSA_2014_7_1_a6, author = {Ashtiani, Arya Aghili and Raja, Pandora and Nikravesh, Sayyed Kamaloddin Yadavar}, title = {Various symmetries in matrix theory with application to modeling dynamic systems}, journal = {Journal of nonlinear sciences and its applications}, pages = {63-69}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2014}, doi = {10.22436/jnsa.007.01.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.07/} }
TY - JOUR AU - Ashtiani, Arya Aghili AU - Raja, Pandora AU - Nikravesh, Sayyed Kamaloddin Yadavar TI - Various symmetries in matrix theory with application to modeling dynamic systems JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 63 EP - 69 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.07/ DO - 10.22436/jnsa.007.01.07 LA - en ID - JNSA_2014_7_1_a6 ER -
%0 Journal Article %A Ashtiani, Arya Aghili %A Raja, Pandora %A Nikravesh, Sayyed Kamaloddin Yadavar %T Various symmetries in matrix theory with application to modeling dynamic systems %J Journal of nonlinear sciences and its applications %D 2014 %P 63-69 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.07/ %R 10.22436/jnsa.007.01.07 %G en %F JNSA_2014_7_1_a6
Ashtiani, Arya Aghili; Raja, Pandora; Nikravesh, Sayyed Kamaloddin Yadavar. Various symmetries in matrix theory with application to modeling dynamic systems. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 63-69. doi : 10.22436/jnsa.007.01.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.07/
[1] Numerical Solution of Fuzzy Relational Equations Based on Smooth Fuzzy Norms, Soft Computing, Volume 14 (2010), pp. 545-557
[2] Elgenvalues and Elgenvectors of Symmetric Centrosymmetrlc Matrlces, Linear Algebra Appl., Volume 13 (1976), pp. 275-288
[3] Linear System Theory and Design, 4th Ed., Oxford University Press, 2012
[4] The Inverse of a Centrosymmetric Matrix, Technometrics, Volume 12 (1970), pp. 925-928
[5] Linear Algebra, second ed., Prentice-Hall, Inc., 1971
[6] Relations Between \(\{K; s+1\}\)-potent matrices and Different Classes of Complex Matrices, Linear Algebra Appl., Volume 438 (2013), pp. 1517-1531
[7] On the spectral radius of a nonnegative centrosymmetric matrix, Appl. Math. Comput., Volume 218 (2012), pp. 4962-4966
[8] A Treatise on the Theory of Determinants, Dover (originally published 1883). , , 1960
[9] Problems and Theorems in Linear Algebra, Translations of Mathematical Monographs, No. 134, 1994
[10] The Iterative Methods for Centrosymmetric Matrices, Appl. Math. Comput., Volume 187 (2007), pp. 902-911
[11] Least-Square Solutions for Inverse Problems of Centrosymmetric Matrices, Computers and Mathematics with Applications, Volume 45 (2003), pp. 1581-1589
Cité par Sources :