Existence and uniqueness of fixed points in modified intuitionistic fuzzy metric spaces
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 28-41.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, utilizing the concept of common limit range property, we prove integral type common fixed point theorems for two pairs of weakly compatible mappings satisfying $\phi$-contractive conditions in modified intuitionistic fuzzy metric spaces. We give some examples to support the useability of our results. We extend our results to four finite families of self mappings by using the notion of pairwise commuting.
DOI : 10.22436/jnsa.007.01.04
Classification : 47H10, 54H25
Keywords: Modified intuitionistic fuzzy metric space, weakly compatible mappings, common limit range property, fixed point.

Chauhan, Sunny 1 ; Shatanawi, Wasfi 2 ; Kumar, Suneel 3 ; Radenović, Stojan 4

1 Near Nehru Training Centre, H. No. 274, Nai Basti B-14, Bijnor-246701, Uttar Pradesh, India
2 Department of Mathematics, Hashemite University, Zarqa, Jordan
3 Government Higher Secondary School, Sanyasiowala PO-Japsur, 244712, Uttarakhand, India
4 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120, Beograd, Serbia
@article{JNSA_2014_7_1_a3,
     author = {Chauhan, Sunny and Shatanawi, Wasfi and Kumar, Suneel and Radenovi\'c, Stojan},
     title = {Existence and uniqueness of fixed points in modified intuitionistic fuzzy metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {28-41},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     doi = {10.22436/jnsa.007.01.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.04/}
}
TY  - JOUR
AU  - Chauhan, Sunny
AU  - Shatanawi, Wasfi
AU  - Kumar, Suneel
AU  - Radenović, Stojan
TI  - Existence and uniqueness of fixed points in modified intuitionistic fuzzy metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 28
EP  - 41
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.04/
DO  - 10.22436/jnsa.007.01.04
LA  - en
ID  - JNSA_2014_7_1_a3
ER  - 
%0 Journal Article
%A Chauhan, Sunny
%A Shatanawi, Wasfi
%A Kumar, Suneel
%A Radenović, Stojan
%T Existence and uniqueness of fixed points in modified intuitionistic fuzzy metric spaces
%J Journal of nonlinear sciences and its applications
%D 2014
%P 28-41
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.04/
%R 10.22436/jnsa.007.01.04
%G en
%F JNSA_2014_7_1_a3
Chauhan, Sunny; Shatanawi, Wasfi; Kumar, Suneel; Radenović, Stojan. Existence and uniqueness of fixed points in modified intuitionistic fuzzy metric spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 28-41. doi : 10.22436/jnsa.007.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.04/

[1] Aamri, M.; Moutawakil, D. El Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. , Volume 270(1) (2002), pp. 181-188

[2] A. T. Atanassov Intuitionistic fuzzy sets , Fuzzy Sets & Systems, Volume 20 (1986), pp. 87-96

[3] Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., Volume 29(9) (2002), pp. 531-536

[4] Canzoneri, E.; Vetro, P. Fixed points for asymptotic contractions of integral Meir-Keeler type, J. Nonlinear Sci. Appl., Volume 5(2) (2012), pp. 126-132

[5] Chauhan, S.; Imdad, M.; Samet, B. Coincidence and Common Fixed Point Theorems in Modified Intuitionistic Fuzzy Metric Spaces, Math. Comput. Model., in press., 2013

[6] Chauhan, S.; Pant, B. D.; Radenović, S. Common fixed point theorems for R-weakly commuting mappings with common limit in the range property, J. Indian Math. Soc., Volume J. Indian Math. Soc. (2014)

[7] Cho, Y. J.; Rhoades, B. E.; Saadati, R.; Samet, B.; W. Shatanawi Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type, Fixed Point Theory Appl. , Vol. 2012, Article 8, 2012

[8] Cho, Y. J.; Saadati, R. A common fixed point theorem in intuitionistic fuzzy metric spaces, Int. J. Comput. Appl. Math., Volume 2(1) (2007), pp. 1-5

[9] Deschrijver, G.; Cornelis, C.; Kerre, E. E. On the representation of intuitionistic fuzzy t-norm and t-conorm, IEEE Trans. Fuzzy System, Volume 12 (2004), pp. 45-61

[10] Deschrijver, G.; Kerre, E. E. On the relationship between some extensions of fuzzy set theory, Fuzzy Sets & Systems, Volume 133 (2003), pp. 227-235

[11] Djoudi, A.; Aliouche, A. Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type, J. Math. Anal. Appl., Volume 329(1) (2007), pp. 31-45

[12] George, A.; Veeramani, P. On some results in fuzzy metric spaces, Fuzzy Sets & Systems, Volume 64 (1994), pp. 395-399

[13] Gregori, V.; Romaguera, S.; Veereamani, P. A note on intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, Volume 28 (2006), pp. 902-905

[14] Imdad, M.; J. Ali Some common fixed point theorems in fuzzy metric spaces, Math. Commun., Volume 11 (2006), pp. 153-163

[15] Imdad, M.; Ali, J.; Hasan, M. Common fixed point theorems in modified intuitionistic fuzzy metric spaces, Iran. J. Fuzzy Syst., Volume 9(5) (2012), pp. 77-92

[16] Imdad, M.; Pant, B. D.; Chauhan, S. Fixed point theorems in Menger spaces using the (CLRST ) property and applications, J. Nonlinear Anal. Optim. Theory Appl., Volume 3(2) (2012), pp. 225-237

[17] Jain, S.; Jain, S.; Jain, L. B. Compatibility of type (P) in modified intuitionistic fuzzy metric space, J. Nonlinear Sci. Appl., Volume 3(2) (2010), pp. 96-109

[18] Jungck, G.; Rhoades, B. E. Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., Volume 29(3) (1998), pp. 227-238

[19] Li, Y.; Gu, F. Common fixed point theorem of Altman integral type mappings, J. Nonlinear Sci. Appl., Volume 2(4) (2009), pp. 214-218

[20] Liu, Y.; Wu, Jun; Li, Z. Common fixed points of single-valued and multivalued maps, Int. J. Math. Math. Sci., Volume 2005 (2005), pp. 3045-3055

[21] Park, J. H. Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, Volume 22 (2004), pp. 1039-1046

[22] Rao, K. P. R.; Ali, Md. Mustaq; Babu, A. Som Common fixed points for D-maps satisfying integral type condition, J. Nonlinear Sci. Appl., Volume 3(4) (2010), pp. 294-301

[23] Saadati, R.; Sedghi, S.; Shobe, N. Modified Intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos, Solitons & Fractals, Volume 38 (2008), pp. 36-47

[24] Samet, B.; Vetro, C. An integral version of Ćirić's fixed point theorem, Mediterr. J. Math., Volume 9 (2012), pp. 225-238

[25] Sedghi, S.; Shobe, N.; Aliouche, A. Common fixed point theorems in intuitionistic fuzzy metric spaces through conditions of integral type, Appl. Math. Inform. Sci., Volume 2(1) (2008), pp. 61-82

[26] Sintunavarat, W.; Chauhan, S.; Kumam, P. Some fixed point results in modified intuitionistic fuzzy metric spaces, Afrika Mat. DOI 10.1007/s13370-012-0128-0 , in press, 2013

[27] Sintunavarat, W.; Kumam, P. Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl. Math., Article ID 637958, Volume 2011 (2011), pp. 1-14

[28] Suzuki, T. Meir-Keeler contractions of integral type are still Meir-Keeler contractions, Int. J. Math. Math. Sci. Art. ID 39281, Volume 2007 (2007), pp. 1-6

[29] Tanveer, M.; Imdad, M.; Gopal, D.; D. K. Patel Common fixed point theorems in modified intuitionistic fuzzy metric spaces with common property (E.A.) , Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-36

[30] C. Vetro On Branciari's theorem for weakly compatible mappings, Appl. Math. Lett., Volume 23(6) (2010), pp. 700-705

[31] Vijayaraju, P.; Rhoades, B. E.; R. Mohanraj A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Internat. J. Math. Math. Sci., Volume 15 (2005), pp. 2359-2364

Cité par Sources :