Solution and stability of a reciprocal type functional equation in several variables
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 18-27.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we obtain the general solution and investigate the generalized Hyers-Ulam stability of a reciprocal type functional equation in several variables of the form
$\frac{\Pi^m_{ i=2} r(x_1 + x_i)}{\sum ^m_{i=2}[\Pi^m_{ j=2, j\neq i} r(x_1+x_j)]}=\frac{\Pi ^m _{i=1} r(x_i)}{\sum ^m_{i=2}r(x_1)[\Pi^m_{ j=2, j\neq i} r(x_j)]+ (m - 1)\Pi^m_{ i=2} r(x_i)}$
where $m$ is a positive integer with $m \geq 3$.
DOI : 10.22436/jnsa.007.01.03
Classification : 39B22, 39B52, 39B72
Keywords: Rassias reciprocal functional equation, General reciprocal functional equations, Adjoint and difference functional equations

Ravi, K. 1 ; Thandapani, E. 2 ; Kumar, B.V. Senthil 3

1 PG & Research Department of Mathematics, Sacred Heart College, Tirupattur - 635 601, TamilNadu, India
2 Ramanujan Institute of Advance Study in Mathematics, University of Madras, Chepauk, Chennai- 600 005, Tamil Nadu, India
3 Department of Mathematics, C. Abdul Hakeem College of Engg. and Tech., Melvisharam - 632 509, TamilNadu, India
@article{JNSA_2014_7_1_a2,
     author = {Ravi, K. and Thandapani, E. and Kumar, B.V. Senthil},
     title = {Solution and stability of a reciprocal type functional equation in several variables},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {18-27},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     doi = {10.22436/jnsa.007.01.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.03/}
}
TY  - JOUR
AU  - Ravi, K.
AU  - Thandapani, E.
AU  - Kumar, B.V. Senthil
TI  - Solution and stability of a reciprocal type functional equation in several variables
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 18
EP  - 27
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.03/
DO  - 10.22436/jnsa.007.01.03
LA  - en
ID  - JNSA_2014_7_1_a2
ER  - 
%0 Journal Article
%A Ravi, K.
%A Thandapani, E.
%A Kumar, B.V. Senthil
%T Solution and stability of a reciprocal type functional equation in several variables
%J Journal of nonlinear sciences and its applications
%D 2014
%P 18-27
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.03/
%R 10.22436/jnsa.007.01.03
%G en
%F JNSA_2014_7_1_a2
Ravi, K.; Thandapani, E.; Kumar, B.V. Senthil. Solution and stability of a reciprocal type functional equation in several variables. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 18-27. doi : 10.22436/jnsa.007.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.03/

[1] T. Aoki On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[2] Gajda, Z. On stability of additive mappings, Int. J. Math. Math. Sci., Volume 14 (1991), pp. 431-434

[3] Gavruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436

[4] Hyers, D. H. On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U.S.A. , Volume 27 (1941), pp. 222-224

[5] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., Volume 6 (1982), pp. 126-130

[6] J. M. Rassias On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., Volume 108 (1984), pp. 445-446

[7] Rassias, J. M. Solution of a problem of Ulam, J. Approx.Theory, Volume 57 (1989), pp. 268-273

[8] Ravi, K.; Kumar, B. V. Senthil Ulam-Gavruta-Rassias stability of Rassias Reciprocal functional equation, Global Journal of App. Math. and Math. Sci., Volume 3 (2010), pp. 57-79

[9] Ravi, K.; Rassias, J. M.; Kumar, B. V. Senthil Ulam stability of Generalized Reciprocal Funtional Equation in several variables, Int. J. App. Math. Stat. , Volume 19 (2010), pp. 1-19

[10] Ravi, K.; Rassias, J. M.; Kumar, B. V. Senthil Ulam stability of Reciprocal Difference and Adjoint Funtional Equations, The Australian J. Math. Anal.Appl., Volume 8(1) (2011), pp. 1-18

[11] Ravi, K.; Thandapani, E.; Kumar, B. V. Senthil Stability of reciprocal type functional equations, PanAmerican Math. Journal, Volume 21(1) (2011), pp. 59-70

[12] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., Volume 72 (1978), pp. 297-300

[13] Ulam, S. M. A collection of mathematical problems, Interscience Publishers, Inc., New York, 1960

Cité par Sources :