Voir la notice de l'article provenant de la source International Scientific Research Publications
$\frac{\Pi^m_{ i=2} r(x_1 + x_i)}{\sum ^m_{i=2}[\Pi^m_{ j=2, j\neq i} r(x_1+x_j)]}=\frac{\Pi ^m _{i=1} r(x_i)}{\sum ^m_{i=2}r(x_1)[\Pi^m_{ j=2, j\neq i} r(x_j)]+ (m - 1)\Pi^m_{ i=2} r(x_i)}$ |
Ravi, K. 1 ; Thandapani, E. 2 ; Kumar, B.V. Senthil 3
@article{JNSA_2014_7_1_a2, author = {Ravi, K. and Thandapani, E. and Kumar, B.V. Senthil}, title = {Solution and stability of a reciprocal type functional equation in several variables}, journal = {Journal of nonlinear sciences and its applications}, pages = {18-27}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2014}, doi = {10.22436/jnsa.007.01.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.03/} }
TY - JOUR AU - Ravi, K. AU - Thandapani, E. AU - Kumar, B.V. Senthil TI - Solution and stability of a reciprocal type functional equation in several variables JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 18 EP - 27 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.03/ DO - 10.22436/jnsa.007.01.03 LA - en ID - JNSA_2014_7_1_a2 ER -
%0 Journal Article %A Ravi, K. %A Thandapani, E. %A Kumar, B.V. Senthil %T Solution and stability of a reciprocal type functional equation in several variables %J Journal of nonlinear sciences and its applications %D 2014 %P 18-27 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.03/ %R 10.22436/jnsa.007.01.03 %G en %F JNSA_2014_7_1_a2
Ravi, K.; Thandapani, E.; Kumar, B.V. Senthil. Solution and stability of a reciprocal type functional equation in several variables. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 18-27. doi : 10.22436/jnsa.007.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.03/
[1] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66
[2] On stability of additive mappings, Int. J. Math. Math. Sci., Volume 14 (1991), pp. 431-434
[3] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436
[4] On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U.S.A. , Volume 27 (1941), pp. 222-224
[5] On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., Volume 6 (1982), pp. 126-130
[6] On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., Volume 108 (1984), pp. 445-446
[7] Solution of a problem of Ulam, J. Approx.Theory, Volume 57 (1989), pp. 268-273
[8] Ulam-Gavruta-Rassias stability of Rassias Reciprocal functional equation, Global Journal of App. Math. and Math. Sci., Volume 3 (2010), pp. 57-79
[9] Ulam stability of Generalized Reciprocal Funtional Equation in several variables, Int. J. App. Math. Stat. , Volume 19 (2010), pp. 1-19
[10] Ulam stability of Reciprocal Difference and Adjoint Funtional Equations, The Australian J. Math. Anal.Appl., Volume 8(1) (2011), pp. 1-18
[11] Stability of reciprocal type functional equations, PanAmerican Math. Journal, Volume 21(1) (2011), pp. 59-70
[12] On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., Volume 72 (1978), pp. 297-300
[13] A collection of mathematical problems, Interscience Publishers, Inc., New York, 1960
Cité par Sources :