Voir la notice de l'article provenant de la source International Scientific Research Publications
Sayevand, Khosro 1
@article{JNSA_2014_7_1_a1, author = {Sayevand, Khosro}, title = {Convergence and stability analysis of modified backward time centered space approach for non-dimensionalizing parabolic equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {11-17}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2014}, doi = {10.22436/jnsa.007.01.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.02/} }
TY - JOUR AU - Sayevand, Khosro TI - Convergence and stability analysis of modified backward time centered space approach for non-dimensionalizing parabolic equation JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 11 EP - 17 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.02/ DO - 10.22436/jnsa.007.01.02 LA - en ID - JNSA_2014_7_1_a1 ER -
%0 Journal Article %A Sayevand, Khosro %T Convergence and stability analysis of modified backward time centered space approach for non-dimensionalizing parabolic equation %J Journal of nonlinear sciences and its applications %D 2014 %P 11-17 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.02/ %R 10.22436/jnsa.007.01.02 %G en %F JNSA_2014_7_1_a1
Sayevand, Khosro. Convergence and stability analysis of modified backward time centered space approach for non-dimensionalizing parabolic equation. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 11-17. doi : 10.22436/jnsa.007.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.02/
[1] Extension of a property of the heat equation to linear thermoelasticity and other theories, Quart. Appl. Math. , Volume 40 (1982), pp. 319-330
[2] The finite difference methods in partial differential equations, Wiley, New York, 1980
[3] The modified equation approach to the stability and accuracy analysis of finite-difference methods, J. Comput. Phys., Volume 14 (1974), pp. 159-179
[4] Numerical solution of partial differential equations in science and engineering, Wiley, New York, 1982
[5] Applied numerical analysis, Fifth Edition, Addison-Wesley, 1994
[6] A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM J. Num. Anal., Volume 24 (1987), pp. 499-515
[7] A finite difference method for analysing the compression of pro-viscoelasticmedia, Computing , Volume 6 (1970), pp. 342-348
[8] An integro-differential equation for rigid heat conduction equations with memory, J. Math. Anal. Appl., Volume 66 (1978), pp. 318-327
Cité par Sources :