Convergence and stability analysis of modified backward time centered space approach for non-dimensionalizing parabolic equation
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 11-17.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The present paper is motivated by the desire to obtain the numerical solution of the heat equation. A finite-difference schemes is introduced to obtain the solution. The convergence and stability analysis of the proposed approach is discussed and compared.
DOI : 10.22436/jnsa.007.01.02
Classification : 34A08, 49S05
Keywords: Convergence analysis, Finite-difference schemes, Heat equation, Stability.

Sayevand, Khosro 1

1 Faculty of Mathematical Sciences, Malayer University, Malayer, Iran
@article{JNSA_2014_7_1_a1,
     author = {Sayevand, Khosro},
     title = {Convergence and stability analysis of modified backward time centered space approach for non-dimensionalizing parabolic equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {11-17},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     doi = {10.22436/jnsa.007.01.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.02/}
}
TY  - JOUR
AU  - Sayevand, Khosro
TI  - Convergence and stability analysis of modified backward time centered space approach for non-dimensionalizing parabolic equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 11
EP  - 17
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.02/
DO  - 10.22436/jnsa.007.01.02
LA  - en
ID  - JNSA_2014_7_1_a1
ER  - 
%0 Journal Article
%A Sayevand, Khosro
%T Convergence and stability analysis of modified backward time centered space approach for non-dimensionalizing parabolic equation
%J Journal of nonlinear sciences and its applications
%D 2014
%P 11-17
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.02/
%R 10.22436/jnsa.007.01.02
%G en
%F JNSA_2014_7_1_a1
Sayevand, Khosro. Convergence and stability analysis of modified backward time centered space approach for non-dimensionalizing parabolic equation. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 11-17. doi : 10.22436/jnsa.007.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.02/

[1] Day, W. A. Extension of a property of the heat equation to linear thermoelasticity and other theories, Quart. Appl. Math. , Volume 40 (1982), pp. 319-330

[2] Mitchell, A. R.; D. F. Griffiths The finite difference methods in partial differential equations, Wiley, New York, 1980

[3] Waxming, R. F.; Hyett, B. J. The modified equation approach to the stability and accuracy analysis of finite-difference methods, J. Comput. Phys., Volume 14 (1974), pp. 159-179

[4] Lapidus, L.; G. F. Pinder Numerical solution of partial differential equations in science and engineering, Wiley, New York, 1982

[5] Gerald, C. F.; Wheatley, P. O. Applied numerical analysis, Fifth Edition, Addison-Wesley, 1994

[6] Cannon, J. R.; S. Prez-Esteva; Hoek, J. Van Der A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM J. Num. Anal., Volume 24 (1987), pp. 499-515

[7] Habetlet, G. R.; Schiffman, R. I. A finite difference method for analysing the compression of pro-viscoelasticmedia, Computing , Volume 6 (1970), pp. 342-348

[8] R. K. Miller An integro-differential equation for rigid heat conduction equations with memory, J. Math. Anal. Appl., Volume 66 (1978), pp. 318-327

Cité par Sources :