Fixed points for Geraghty-Contractions in partial metric spaces
Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 1-10.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We establish some fixed point theorems for mappings satisfying Geraghty-type contractive conditions in the setting of partial metric spaces and ordered partial metric spaces. Presented theorems extend and generalize many existing results in the literature. Examples are given showing that these results are proper extensions of the existing ones.
DOI : 10.22436/jnsa.007.01.01
Classification : 47H10, 54H25
Keywords: Coincidence point, partial metric space, ordered partial metric space, Geraghty-type contractive condition, fixed point.

Rosa, Vincenzo La 1 ; Vetro, Pasquale 1

1 Dipartimento di Matematica e Informatica, Universita degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy
@article{JNSA_2014_7_1_a0,
     author = {Rosa, Vincenzo La and Vetro, Pasquale},
     title = {Fixed points for {Geraghty-Contractions} in partial metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1-10},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     doi = {10.22436/jnsa.007.01.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.01/}
}
TY  - JOUR
AU  - Rosa, Vincenzo La
AU  - Vetro, Pasquale
TI  - Fixed points for Geraghty-Contractions in partial metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2014
SP  - 1
EP  - 10
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.01/
DO  - 10.22436/jnsa.007.01.01
LA  - en
ID  - JNSA_2014_7_1_a0
ER  - 
%0 Journal Article
%A Rosa, Vincenzo La
%A Vetro, Pasquale
%T Fixed points for Geraghty-Contractions in partial metric spaces
%J Journal of nonlinear sciences and its applications
%D 2014
%P 1-10
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.01/
%R 10.22436/jnsa.007.01.01
%G en
%F JNSA_2014_7_1_a0
Rosa, Vincenzo La; Vetro, Pasquale. Fixed points for Geraghty-Contractions in partial metric spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 1-10. doi : 10.22436/jnsa.007.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.01/

[1] Abdeljawad, T.; Karapinar, E.; K. Tas A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., Volume 63 (2012), pp. 716-719

[2] Altun, I.; Erduran, A. Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., Article ID 508730, doi:10.1155/2011/508730. , Volume 2011 (2011), pp. 1-10

[3] Altun, I.; Sola, F.; H. Simsek Generalized contractions on partial metric spaces, Topology Appl., Volume 157 (2010), pp. 2778-2785

[4] Amini-Harandi, A.; Emami, H. A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal., Volume 72 (2010), pp. 2238-2242

[5] H. Aydi Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces, J. Nonlinear Anal. Optimization: Theory and Applications, Volume 2 (2011), pp. 33-48

[6] H. Aydi Common fixed point results for mappings satisfying (\(\psi,\phi\))-weak contractions in ordered partial metric spaces, Int. J. Math. Stat. , Volume 12 (2012), pp. 53-64

[7] Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl., Volume 159 (2012), pp. 3234-3242

[8] Berinde, V.; Vetro, F. Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl., 2012:105, 2012

[9] Bukatin, M. A.; Scott, J. S. Towards computing distances between programs via Scott domains, in: Logical Foundations of Computer Science, Lecture Notes in Computer Science (eds. S. Adian and A. Nerode), Springer (Berlin), Volume 1234 (1997), pp. 33-43

[10] Bukatin, M. A.; Shorina, S.Y. Partial metrics and co-continuous valuations, in: Foundations of Software Science and Computation Structures, Lecture Notes in Computer Science (ed. M. Nivat), Springer (Berlin),, Volume 1378 (1998), pp. 33-43

[11] Chi, K. P.; Karapinar, E.; T. D. Thanh A generalized contraction principle in partial metric spaces, Math. Comput. Modelling, Volume 55 (2012), pp. 1673-1681

[12] Ćirić, Lj. B. A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273

[13] Ćirić, Lj.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., Volume 218 (2011), pp. 2398-2406

[14] Ćirić, Lj. On contraction type mappings , Math. Balkanica, Volume 1 (1971), pp. 52-57

[15] Bari, C. Di; P. Vetro Fixed points for weak \(\varphi\)-contractions on partial metric spaces, Int. J. of Engineering, Contemporary Mathematics and Sciences, Volume 1 (2011), pp. 5-13

[16] Bari, C. Di; Kadelburg, Z.; Nashine, H.; Radenović, S. Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces, Fixed Point Theory Appl., 2012:113, 2012

[17] Dukić, D.; Kadelburg, Z.; Radenović, S. Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., Article ID 561245, Volume 2011 (2011), pp. 1-13

[18] M. Geraghty On contractive mappings, Proc. Am. Math. Soc., Volume 40 (1973), pp. 604-608

[19] Heckmann, R. Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures, Volume 7 (1999), pp. 71-83

[20] Ilić, D.; Pavlović, V.; Rakočević, V. Some new extensions of Banach's contraction principle to partial metric space, Appl. Math. Lett., Volume 24 (2011), pp. 1326-1330

[21] Karapinar, E. Weak \(\phi\)-contraction on partial metric spaces, J. Comput. Anal. Appl., Volume 14 (2012), pp. 206-210

[22] E. Karapinar A note on common fixed point theorems in partial metric spaces, Miskolc Math. Notes, Volume 12 (2011), pp. 185-191

[23] Karapinar, E.; Erhan, I. M. Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1900-1904

[24] Karapinar, E.; U. Yuksel Some common fixed point theorems in partial metric spaces, J. Appl. Math., Article ID 263621 , Volume 2011 (2011), pp. 1-17

[25] Kopperman, R. D.; Matthews, S. G.; Pajoohesh, H. What do partial metrics represent? , Notes distributed at the 19th Summer Conference on Topology and its Applications, University of CapeTown, 2004

[26] Kunzi, H. P. A.; Pajoohesh, H.; Schellekens, M. P. Partial quasi-metrics, Theoret. Comput. Sci. , Volume 365 (2006), pp. 237-246

[27] S. G. Matthews Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., Volume 728 (1994), pp. 183-197

[28] S. J. O'Neill Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., Volume 806 (1996), pp. 304-315

[29] Nieto, J. J.; R. Rodríguez-López Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order , Volume 22 (2005), pp. 223-239

[30] Nieto, J. J.; Rodríguez-López, R. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) , Volume 23 (2007), pp. 2205-2212

[31] Nieto, J. J.; Pouso, R. L.; R. Rodríguez-López Fixed point theorems in ordered abstract spaces , Proc. Amer. Math. Soc., Volume 132 (2007), pp. 2505-2517

[32] Oltra, S.; Valero, O. Banach's fixed point theorem for partial metric spaces , Rend. Istit. Mat. Univ. Trieste, Volume 36 (2004), pp. 17-26

[33] Paesano, D.; Vetro, P. Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., Volume 159 (2012), pp. 911-920

[34] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2003), pp. 1435-1443

[35] Reich, S. Some remarks concerning contraction mappings , Canad. Math. Bull. , Volume 14 (1971), pp. 121-124

[36] Romaguera, S. Fixed point theorems for generalized contractions on partial metric spaces, Topology Appl., Volume 159 (2012), pp. 194-199

[37] Romaguera, S. Matkowski's type theorems for generalized contractions on (ordered) partial metric spaces, Appl. Gen. Topol., Volume 12 (2011), pp. 213-220

[38] Romaguera, S.; Schellekens, M. Duality and quasi-normability for complexity space , Appl. Gen. Topol., Volume 3 (2002), pp. 91-112

[39] Romaguera, S.; M. Schellekens Partial metric monoids and semivaluation spaces, Topology Appl., Volume 153 (2005), pp. 948-962

[40] Samet, B.; Vetro, C.; P. Vetro Fixed point theorems for \(\alpha-\psi\)-contractive type mappings , Nonlinear Anal., Volume 75 (2012), pp. 2154-2165

[41] Schellekens, M. P. A characterization of partial metrizability: domains are quantifiable, Theoret. Comput. Sci., Volume 305 (2003), pp. 409-432

[42] Schellekens, M. P. The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. , Volume 315 (2004), pp. 135-149

[43] T. Suzuki A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 1861-1869

[44] Vetro, F.; Radenović, S. Nonlinear \(\psi\) -quasi-contractions of Ćirić-type in partial metric spaces, Appl. Math. Comput., Volume 219 (2012), pp. 1594-1600

Cité par Sources :