Voir la notice de l'article provenant de la source International Scientific Research Publications
Rosa, Vincenzo La 1 ; Vetro, Pasquale 1
@article{JNSA_2014_7_1_a0, author = {Rosa, Vincenzo La and Vetro, Pasquale}, title = {Fixed points for {Geraghty-Contractions} in partial metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {1-10}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2014}, doi = {10.22436/jnsa.007.01.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.01/} }
TY - JOUR AU - Rosa, Vincenzo La AU - Vetro, Pasquale TI - Fixed points for Geraghty-Contractions in partial metric spaces JO - Journal of nonlinear sciences and its applications PY - 2014 SP - 1 EP - 10 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.01/ DO - 10.22436/jnsa.007.01.01 LA - en ID - JNSA_2014_7_1_a0 ER -
%0 Journal Article %A Rosa, Vincenzo La %A Vetro, Pasquale %T Fixed points for Geraghty-Contractions in partial metric spaces %J Journal of nonlinear sciences and its applications %D 2014 %P 1-10 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.01/ %R 10.22436/jnsa.007.01.01 %G en %F JNSA_2014_7_1_a0
Rosa, Vincenzo La; Vetro, Pasquale. Fixed points for Geraghty-Contractions in partial metric spaces. Journal of nonlinear sciences and its applications, Tome 7 (2014) no. 1, p. 1-10. doi : 10.22436/jnsa.007.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.007.01.01/
[1] A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., Volume 63 (2012), pp. 716-719
[2] Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., Article ID 508730, doi:10.1155/2011/508730. , Volume 2011 (2011), pp. 1-10
[3] Generalized contractions on partial metric spaces, Topology Appl., Volume 157 (2010), pp. 2778-2785
[4] A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal., Volume 72 (2010), pp. 2238-2242
[5] Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces, J. Nonlinear Anal. Optimization: Theory and Applications, Volume 2 (2011), pp. 33-48
[6] Common fixed point results for mappings satisfying (\(\psi,\phi\))-weak contractions in ordered partial metric spaces, Int. J. Math. Stat. , Volume 12 (2012), pp. 53-64
[7] Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl., Volume 159 (2012), pp. 3234-3242
[8] Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl., 2012:105, 2012
[9] Towards computing distances between programs via Scott domains, in: Logical Foundations of Computer Science, Lecture Notes in Computer Science (eds. S. Adian and A. Nerode), Springer (Berlin), Volume 1234 (1997), pp. 33-43
[10] Partial metrics and co-continuous valuations, in: Foundations of Software Science and Computation Structures, Lecture Notes in Computer Science (ed. M. Nivat), Springer (Berlin),, Volume 1378 (1998), pp. 33-43
[11] A generalized contraction principle in partial metric spaces, Math. Comput. Modelling, Volume 55 (2012), pp. 1673-1681
[12] A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273
[13] Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., Volume 218 (2011), pp. 2398-2406
[14] On contraction type mappings , Math. Balkanica, Volume 1 (1971), pp. 52-57
[15] Fixed points for weak \(\varphi\)-contractions on partial metric spaces, Int. J. of Engineering, Contemporary Mathematics and Sciences, Volume 1 (2011), pp. 5-13
[16] Common fixed points of g-quasicontractions and related mappings in 0-complete partial metric spaces, Fixed Point Theory Appl., 2012:113, 2012
[17] Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., Article ID 561245, Volume 2011 (2011), pp. 1-13
[18] On contractive mappings, Proc. Am. Math. Soc., Volume 40 (1973), pp. 604-608
[19] Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures, Volume 7 (1999), pp. 71-83
[20] Some new extensions of Banach's contraction principle to partial metric space, Appl. Math. Lett., Volume 24 (2011), pp. 1326-1330
[21] Weak \(\phi\)-contraction on partial metric spaces, J. Comput. Anal. Appl., Volume 14 (2012), pp. 206-210
[22] A note on common fixed point theorems in partial metric spaces, Miskolc Math. Notes, Volume 12 (2011), pp. 185-191
[23] Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1900-1904
[24] Some common fixed point theorems in partial metric spaces, J. Appl. Math., Article ID 263621 , Volume 2011 (2011), pp. 1-17
[25] What do partial metrics represent? , Notes distributed at the 19th Summer Conference on Topology and its Applications, University of CapeTown, 2004
[26] Partial quasi-metrics, Theoret. Comput. Sci. , Volume 365 (2006), pp. 237-246
[27] Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., Volume 728 (1994), pp. 183-197
[28] Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., Volume 806 (1996), pp. 304-315
[29] Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order , Volume 22 (2005), pp. 223-239
[30] Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) , Volume 23 (2007), pp. 2205-2212
[31] Fixed point theorems in ordered abstract spaces , Proc. Amer. Math. Soc., Volume 132 (2007), pp. 2505-2517
[32] Banach's fixed point theorem for partial metric spaces , Rend. Istit. Mat. Univ. Trieste, Volume 36 (2004), pp. 17-26
[33] Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., Volume 159 (2012), pp. 911-920
[34] A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2003), pp. 1435-1443
[35] Some remarks concerning contraction mappings , Canad. Math. Bull. , Volume 14 (1971), pp. 121-124
[36] Fixed point theorems for generalized contractions on partial metric spaces, Topology Appl., Volume 159 (2012), pp. 194-199
[37] Matkowski's type theorems for generalized contractions on (ordered) partial metric spaces, Appl. Gen. Topol., Volume 12 (2011), pp. 213-220
[38] Duality and quasi-normability for complexity space , Appl. Gen. Topol., Volume 3 (2002), pp. 91-112
[39] Partial metric monoids and semivaluation spaces, Topology Appl., Volume 153 (2005), pp. 948-962
[40] Fixed point theorems for \(\alpha-\psi\)-contractive type mappings , Nonlinear Anal., Volume 75 (2012), pp. 2154-2165
[41] A characterization of partial metrizability: domains are quantifiable, Theoret. Comput. Sci., Volume 305 (2003), pp. 409-432
[42] The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. , Volume 315 (2004), pp. 135-149
[43] A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 1861-1869
[44] Nonlinear \(\psi\) -quasi-contractions of Ćirić-type in partial metric spaces, Appl. Math. Comput., Volume 219 (2012), pp. 1594-1600
Cité par Sources :