Wavelet packet transform on $L^p (\mathbb{R})$ spaces
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 305-311.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the characterization of $L^p (\mathbb{R})$ spaces by using wavelet packet coefficients. We also drive few results by using wavelet packet transform which generalize some results from the literature.
DOI : 10.22436/jnsa.006.04.08
Classification : 41A58, 42C15, 42C40, 42C05, 42C10
Keywords: Wavelet packet, frame, regularity class and G-function.

Iqbal, Javid 1 ; Ali, Javid 2

1 Department of Applied Mathematics, B. G. S. B. University, Rajouri 185131, J&K, India
2 Department of Mathematics, Birla Institute of Technology & Science, Pilani Campus, Pilani 333031, India
@article{JNSA_2013_6_4_a7,
     author = {Iqbal, Javid and Ali, Javid},
     title = {Wavelet packet transform on  {\(L^p} {(\mathbb{R})\)} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {305-311},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     doi = {10.22436/jnsa.006.04.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.08/}
}
TY  - JOUR
AU  - Iqbal, Javid
AU  - Ali, Javid
TI  - Wavelet packet transform on  \(L^p (\mathbb{R})\) spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 305
EP  - 311
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.08/
DO  - 10.22436/jnsa.006.04.08
LA  - en
ID  - JNSA_2013_6_4_a7
ER  - 
%0 Journal Article
%A Iqbal, Javid
%A Ali, Javid
%T Wavelet packet transform on  \(L^p (\mathbb{R})\) spaces
%J Journal of nonlinear sciences and its applications
%D 2013
%P 305-311
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.08/
%R 10.22436/jnsa.006.04.08
%G en
%F JNSA_2013_6_4_a7
Iqbal, Javid; Ali, Javid. Wavelet packet transform on  \(L^p (\mathbb{R})\) spaces. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 305-311. doi : 10.22436/jnsa.006.04.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.08/

[1] Benedetto, J. J.; Li, S. The theory of multiresolution analysis frames and application to filter banks, Appl. Comput. Harmon. Anal., Volume 5 (1998), pp. 389-427

[2] Bonami, A.; Soria, F.; Weiss, G. Band-limited wavelets, J. Geom. Anal. , Volume 3 (1993), pp. 543-578

[3] Chen, W.; Goh, S. S. Band-limited refinable functions for wavelets and framelets, Appl. Comput. Harmon. Anal., Volume 28 (2010), pp. 338-345

[4] Coifmn, R.; G. Weiss Review of Littlewood-Paley and multiplier theory, Bull. Amer. Math. Soc., Volume 84 (1997), pp. 242-250

[5] Coifman, R. R.; Meyer, Y.; M. V. Wickerhauser Size properties of wavelet packets, In: M. B. Ruskai et al. (eds.), Wavelets and their Applications, Jones and Bartlett, Boston (1992), pp. 453-470

[6] Daubechies, I. Ten lectures on wavelets, SIAM, , 1992

[7] Daubechies, I. The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, Volume 36 (1990), pp. 961-1005

[8] Duffn, R. J.; A.C. Schaeffer A class of non harmonic Fourier series, Trans. Amer. Math. Soc., Volume 72 (1952), pp. 341-366

[9] Dziubański, J.; E. Hernández Band-limited wavelets with subexponentional decay, Cand. Math. Bull., Volume 41 (1998), pp. 398-403

[10] Fefferman, C.; E. M. Stein \(H^p\) spaces of several variables, Acta Math., Volume 93 (1971), pp. 107-115

[11] Frazier, M.; Jawerth, B.; G. Weiss Littlewood-Paley theory and the study of function spaces, CBMS-AMS, , 1991

[12] Grossmann, A.; Morlet, J.; T. Paul Transforms associated to square integrable group representations. I. General results , J. Math. Phys., Volume 26 (1985), pp. 2473-2479

[13] Han, B. On dual wavelet tight frames , Appl. Comput. Harmon. Anal., Volume 4 (1997), pp. 380-413

[14] Hardy, G. H.; Littlewood, J. E. A maximal theorem with function theoretic applications, Acta Math., Volume 54 (1930), pp. 81-116

[15] Hernández, E.; Wang, X.; Weiss, G. Smoothing minimally supported frequency wavelets. Part I, J. Fourier Anal. Appl., Volume 2 (1996), pp. 329-340

[16] Hernández, E.; G. Weiss A first course on wavelets , CRC Press, , 1996

[17] S. Mallat Multiresolution approximation and orthonormal basis of \(L^2(\mathbb{R})\) , Trans. Amer. Math. Soc., Volume 315 (1989), pp. 69-87

[18] Mallat, S. A theory of multiresolution signal decomposition, the wavelet representation, IEEE Trans. Patt. Anal. and Mach. Intell., Volume 11 (1998), pp. 674-693

[19] Meyer, Y. Wavelets, algorithm and applications, Philadelphia: SIAM, , 1993

[20] Paluszyński, M.; Šikić, H.; Weiss, G.; Xiao, S. Tight wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties, Adv. Comput. Math., Volume 18 (2003), pp. 297-327

[21] Wickerhauser, M. V. Acoustic signal compression with wavelet packets, In C.K. Chui (Editor) (1991), pp. 679-700

[22] Wojtaszczyk, P. A mathematical introduction to wavelets, Cambridge University Press, , 1997

Cité par Sources :