Voir la notice de l'article provenant de la source International Scientific Research Publications
Iqbal, Javid 1 ; Ali, Javid 2
@article{JNSA_2013_6_4_a7, author = {Iqbal, Javid and Ali, Javid}, title = {Wavelet packet transform on {\(L^p} {(\mathbb{R})\)} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {305-311}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {2013}, doi = {10.22436/jnsa.006.04.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.08/} }
TY - JOUR AU - Iqbal, Javid AU - Ali, Javid TI - Wavelet packet transform on \(L^p (\mathbb{R})\) spaces JO - Journal of nonlinear sciences and its applications PY - 2013 SP - 305 EP - 311 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.08/ DO - 10.22436/jnsa.006.04.08 LA - en ID - JNSA_2013_6_4_a7 ER -
%0 Journal Article %A Iqbal, Javid %A Ali, Javid %T Wavelet packet transform on \(L^p (\mathbb{R})\) spaces %J Journal of nonlinear sciences and its applications %D 2013 %P 305-311 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.08/ %R 10.22436/jnsa.006.04.08 %G en %F JNSA_2013_6_4_a7
Iqbal, Javid; Ali, Javid. Wavelet packet transform on \(L^p (\mathbb{R})\) spaces. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 305-311. doi : 10.22436/jnsa.006.04.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.08/
[1] The theory of multiresolution analysis frames and application to filter banks, Appl. Comput. Harmon. Anal., Volume 5 (1998), pp. 389-427
[2] Band-limited wavelets, J. Geom. Anal. , Volume 3 (1993), pp. 543-578
[3] Band-limited refinable functions for wavelets and framelets, Appl. Comput. Harmon. Anal., Volume 28 (2010), pp. 338-345
[4] Review of Littlewood-Paley and multiplier theory, Bull. Amer. Math. Soc., Volume 84 (1997), pp. 242-250
[5] Size properties of wavelet packets, In: M. B. Ruskai et al. (eds.), Wavelets and their Applications, Jones and Bartlett, Boston (1992), pp. 453-470
[6] Ten lectures on wavelets, SIAM, , 1992
[7] The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, Volume 36 (1990), pp. 961-1005
[8] A class of non harmonic Fourier series, Trans. Amer. Math. Soc., Volume 72 (1952), pp. 341-366
[9] Band-limited wavelets with subexponentional decay, Cand. Math. Bull., Volume 41 (1998), pp. 398-403
[10] \(H^p\) spaces of several variables, Acta Math., Volume 93 (1971), pp. 107-115
[11] Littlewood-Paley theory and the study of function spaces, CBMS-AMS, , 1991
[12] Transforms associated to square integrable group representations. I. General results , J. Math. Phys., Volume 26 (1985), pp. 2473-2479
[13] On dual wavelet tight frames , Appl. Comput. Harmon. Anal., Volume 4 (1997), pp. 380-413
[14] A maximal theorem with function theoretic applications, Acta Math., Volume 54 (1930), pp. 81-116
[15] Smoothing minimally supported frequency wavelets. Part I, J. Fourier Anal. Appl., Volume 2 (1996), pp. 329-340
[16] A first course on wavelets , CRC Press, , 1996
[17] Multiresolution approximation and orthonormal basis of \(L^2(\mathbb{R})\) , Trans. Amer. Math. Soc., Volume 315 (1989), pp. 69-87
[18] A theory of multiresolution signal decomposition, the wavelet representation, IEEE Trans. Patt. Anal. and Mach. Intell., Volume 11 (1998), pp. 674-693
[19] Wavelets, algorithm and applications, Philadelphia: SIAM, , 1993
[20] Tight wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties, Adv. Comput. Math., Volume 18 (2003), pp. 297-327
[21] Acoustic signal compression with wavelet packets, In C.K. Chui (Editor) (1991), pp. 679-700
[22] A mathematical introduction to wavelets, Cambridge University Press, , 1997
Cité par Sources :