A fixed point theorem in a lattice ordered semigroup cone valued cone metric spaces
Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 285-292.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce the notion of a cone which is a lattice ordered semigroup (l.o.s.g. cone) in a real Banach space, obtain certain preliminary results on such cones and obtain a fixed point theorem on a cone metric space with l.o.s.g. cone which eventually extends a result of Filipovic et. al. [M. Filipović, L. Paunović, S. Radenović and M. Rajović, Math. Compu. Model. 54 (2011), 1467-1472] to cone metric spaces equipped with l.o.s.g. cone.
DOI : 10.22436/jnsa.006.04.06
Classification : 47H10, 54H25
Keywords: Cone metric space, Comparison function, Lattice ordered semigroup, l.o.s.g. cone, Coincidence point, Fixed point.

Sastry, K. P. R. 1 ; Rao, Ch. Srinivasa 2 ; Sekhar, A. Chandra 3 ; Balaiah, M. 4

1 8-28-8/1, Tamil street, Chinna Waltair, Visakhapatnam--530 017, India
2 Department of Mathematics, Mrs. A. V. N. College, Visakhapatnam--530 001, India
3 Department of Mathematics, GIT, Gitam University, Visakhapatnam--530 045, India
4 Department of Mathematics, Srinivasa Institute of Engineering & Technology, N. H. 216, Cheyyeru, Amalapuram, East Godavari (Dist), 533 222, India
@article{JNSA_2013_6_4_a5,
     author = {Sastry, K. P. R. and Rao, Ch. Srinivasa and Sekhar, A. Chandra and Balaiah, M.},
     title = {A fixed point theorem in a lattice ordered semigroup cone valued cone metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {285-292},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     doi = {10.22436/jnsa.006.04.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.06/}
}
TY  - JOUR
AU  - Sastry, K. P. R.
AU  - Rao, Ch. Srinivasa
AU  - Sekhar, A. Chandra
AU  - Balaiah, M.
TI  - A fixed point theorem in a lattice ordered semigroup cone valued cone metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2013
SP  - 285
EP  - 292
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.06/
DO  - 10.22436/jnsa.006.04.06
LA  - en
ID  - JNSA_2013_6_4_a5
ER  - 
%0 Journal Article
%A Sastry, K. P. R.
%A Rao, Ch. Srinivasa
%A Sekhar, A. Chandra
%A Balaiah, M.
%T A fixed point theorem in a lattice ordered semigroup cone valued cone metric spaces
%J Journal of nonlinear sciences and its applications
%D 2013
%P 285-292
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.06/
%R 10.22436/jnsa.006.04.06
%G en
%F JNSA_2013_6_4_a5
Sastry, K. P. R.; Rao, Ch. Srinivasa; Sekhar, A. Chandra; Balaiah, M. A fixed point theorem in a lattice ordered semigroup cone valued cone metric spaces. Journal of nonlinear sciences and its applications, Tome 6 (2013) no. 4, p. 285-292. doi : 10.22436/jnsa.006.04.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.006.04.06/

[1] Abbas, M.; Jungck, G. Common fixed point results for non commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 416-420

[2] Abbas, M.; Rhoades, B. E. Fixed and periodic point results in cone metric spaces , Appl. Math. Lett., Volume 22 (2009), pp. 511-515

[3] Abbas, M.; Jovanović, M.; Radenović, S.; Sretenović, A.; Simić, S. Abstract metric spaces and approximating fixed points of a pair of contractive type mappings, J. Comput. Math. Anal. Appl. , Volume 13 (2) (2011), pp. 243-253

[4] Arshad, M.; Azam, A.; P. Vetro Some common fixed point results in cone metric spaces, Fixed point theory and applications, Article ID 493965, Volume 2009 (2009)

[5] Azam, A.; M. Arshad Common fixed points of generalized contractive maps in cone metric spaces, Bull. Iranian Math. Soc. , Volume 35 (2009), pp. 255-264

[6] Azam, A.; Arshad, M.; I. Beg Common fixed point theorems in cone metric spaces, J. Nonlinear Sci. Appl. , Volume 2 (2009), pp. 204-213

[7] Beg, I.; Abbas, M.; Nazir, T. Generalized cone metric spaces, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 21-31

[8] Berinde, V. Common fixed points of non commuting almost contractions in cone metric spaces, Math. Commun., Volume 15 (2010), pp. 229-241

[9] G. Birkhoff Lattice Theory , Amer. Math. Soc. Colloq. Publ. XXV, Providence, U. S. A. (1967)

[10] Chen, Chi-Ming; Chang, Tong-Huei Common fixed point theorems for a weaker Meir-Keeler type function in cone metric spaces, Appl. Math. Lett., Volume 23 (2010), pp. 1336-1341

[11] Filipović, M.; Paunović, L.; Radenović, S.; M. Rajović Remarks on ''Cone metric spaces and fixed point theorems of T-Kannan and T- Chatterjea contractive mappings, Math. Compu. Model., Volume 54 (2011), pp. 1467-1472

[12] Haung, L. G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476

[13] Ilic, D.; Rakocević, V. Quasi contraction on a cone metric space, Appl. Math. Lett., Volume 22 (5) (2009), pp. 728-731

[14] Jain, Sh.; Jain, Sh.; L. B. Jain On Banach contraction principle in a cone metric space, J. Nonlinear Sci. Appl. , Volume 5 (2012), pp. 252-258

[15] Jeong, G. S.; Rhoades, B. E. Maps for which \(F(T) = F(T^n)\), Fixed point theory and applications, Volume 6 (2005), pp. 87-131

[16] Jleli, M.; B. Samet The Kannan's fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 161-167

[17] Jungck, G.; Radenović, S.; Radojević, S.; Rakocević, V. Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory and Applications, Article ID 643840. (2009), pp. 1-12

[18] Kadelburg, Z.; Radenović, S. Some common fixed point results in non-normal cone metric spaces, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 193-202

[19] Kadelburg, Z.; Radenović, S.; Rakocević, V. Remarks on ''Quasi contraction on a cone metric space'', Appl. Math. Lett., Volume 22 (11) (2009), pp. 1674-1679

[20] Morales, F. R.; Rojas, E. Cone metric spaces and fixed point theorems of T- Kannan contractive mappings, Int. J. Math. Anal., Volume 4 (4) (2010), pp. 175-184

[21] Radenović, S. Common fixed points under contractive conditions in cone metric spaces, Compu. Math. with Appl., Volume 58 (2009), pp. 1273-1278

[22] Radenović, S.; Rakocević, V.; Rezapour, Sh. Common fixed points for (g; f) type maps in cone metric spaces, Appl. Math. Compu., Volume 218 (2011), pp. 480-491

[23] Raja, P.; Vaezapour, S. M. Some extensions of Banach's contraction principle in complete cone metric spaces, Fixed point theory and applications Vol 2008 , Article ID 768294, 2008

[24] Razani, A.; Rakocević, V.; Goodarzi, Z. Generalized \(\varphi\)-contraction for a pair of mappings on cone metric spaces, Appl. Math. Compu., Volume 217 (2011), pp. 8899-8906

[25] Rezapour, Sh.; R. Hamlbarani Some notes on the paper ''Cone metric spaces and fixed point theorems of contractive mappings'' , J. Math. Anal. Appl., Volume 345 (2008), pp. 719-724

[26] Sastry, K. P. R.; Rao, Ch. Srinivasa; sekhar, A. Chandra; Balaiah, M. Existence of common fixed points for a pair of self maps on a cone metric space under B.C. control condition, Appear in Advances in Fixed point theory. ,

[27] Shatanawi, W. Some coincidence point results in cone metric spaces, Math. Compu. Model., Volume 55 (2012), pp. 2023-2028

[28] Song, G.; Sun, X.; Zhao, Y.; G. Wang New common fixed point theorems for maps on cone metric spaces, Appl. Math. Lett., Volume 23 (2010), pp. 1033-1037

[29] Turkoglu, D.; Abuloha, M.; T. Abdeljawad Fixed points of generalized contraction mappings in cone metric spaces, Math. Commun. , Volume 16 (2011), pp. 325-334

Cité par Sources :